ytree.frontends.consistent_trees_hdf5.fields.ConsistentTreesHDF5FieldInfo

class ytree.frontends.consistent_trees_hdf5.fields.ConsistentTreesHDF5FieldInfo(arbor)[source]
__init__(arbor)

Methods

__init__(arbor)

add_alias_field(alias, field[, units, force_add])

Add an alias field.

add_analysis_field(name, units[, dtype, default])

Add an analysis field.

add_derived_field(name, function[, units, ...])

Add a derived field.

add_vector_field(fieldname)

Add vector and magnitude fields for a field with x/y/z components.

clear()

copy()

fromkeys([value])

Create a new dictionary with keys from iterable and values set to value.

get(key[, default])

Return the value for key if key is in the dictionary, else default.

items()

keys()

pop(k[,d])

If key is not found, default is returned if given, otherwise KeyError is raised

popitem()

Remove and return a (key, value) pair as a 2-tuple.

resolve_field_dependencies(fields[, fcache, ...])

Divide fields into those to be read and those to generate.

setdefault(key[, default])

Insert key with a value of default if key is not in the dictionary.

setup_aliases()

Add aliases defined in the alias_fields tuple for each frontend.

setup_derived_fields()

Add stock derived fields.

setup_known_fields()

Add units for fields on disk as defined in the known_fields tuple.

setup_vector_fields()

Add vector and magnitude fields.

update([E, ]**F)

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()

Attributes

alias_fields

data_types

known_fields

vector_fields