

Welcome to ytree.

ytree is a tool for working with merger-tree data from multiple sources.
ytree is an extension of the yt [http://yt-project.org/] analysis toolkit
and provides a similar interface for merger-tree data that includes universal
field names, derived fields, and symbolic units. ytree can create
merger-trees from Gadget FoF/Subfind catalogs, either for all halos or for a
specific set of halos. ytree is able to load in merger-tree from the following
formats:

	Amiga Halo Finder [http://popia.ft.uam.es/AHF/Download.html]

	Consistent-Trees [https://bitbucket.org/pbehroozi/consistent-trees]

	LHaloTree [http://adsabs.harvard.edu/abs/2005MNRAS.364.1105S]

	Rockstar [https://bitbucket.org/gfcstanford/rockstar] halo catalogs
without consistent-trees

	merger-trees made with ytree

All formats can be saved with a universal format that can be reloaded
with ytree. Individual trees for single halos can also be saved.

Table of Contents

	Installation

	What version do I have?

	Sample Data

	Working with Merger-Trees
	Loading Merger-Tree Data

	Working with Merger-Tree Data

	Saving Arbors and Trees

	An Important Note on Comoving and Proper Units

	Fields in ytree
	The Field Info Container

	Fields on Disk

	Alias Fields

	Derived Fields

	Analysis Fields

	Making Merger-trees from Gadget FoF/Subfind
	Computing a Full Merger-tree

	Computing a Targeted Merger-tree

	Optimizing Merger-tree Creation

	Community Code of Conduct

	Contributing to ytree

	Developer Guide
	Contributing in a Nutshell

	Testing

	Adding Support for a New Format

	Help

	Citing ytree

	API Reference
	Working with Merger-Trees

	Making Merger-Trees

	Internal Classes

Citing ytree

If you use ytree in your work, please cite the following:

Britton Smith, & Meagan Lang. (2018, February 16).
ytree: merger-tree toolkit. Zenodo.
http://doi.org/10.5281/zenodo.1174374

For BibTeX users:

@misc{britton_smith_2018_1174374,
 author = {Britton Smith and
 Meagan Lang},
 title = {ytree: merger-tree toolkit},
 month = feb,
 year = 2018,
 doi = {10.5281/zenodo.1174374},
 url = {https://doi.org/10.5281/zenodo.1174374}
}

If possible, please also add a footnote pointing to
http://ytree.readthedocs.io.

Search

	Search Page

Installation

ytree’s main dependency is yt [http://yt-project.org/]. Once you
have installed yt following the instructions here [http://yt-project.org/#getyt], ytree can be installed using pip.

$ pip install ytree

If you’d like to install the development version, the repository can
be found at https://github.com/brittonsmith/ytree. This can be
installed by doing:

$ git clone https://github.com/brittonsmith/ytree
$ cd ytree
$ pip install -e .

What version do I have?

To see what version of ytree you are using, do the following:

import ytree
print (ytree.__version__)

Sample Data

Sample datasets for every supported data format are available for download
from the yt Hub [https://girder.hub.yt/] in the
ytree data [https://girder.hub.yt/#collection/59835a1ee2a67400016a2cda]
collection. The entire collection (about 358 MB) can be downloaded
via the yt Hub’s web interface by clicking on “Actions” drop-down menu on
the far right and selecting “Download collection.” It can also be downloaded
through the girder-client interface:

$ pip install girder-client
$ girder-cli --api-url https://girder.hub.yt/api/v1 download 59835a1ee2a67400016a2cda ytree_data

Working with Merger-Trees

The Arbor class is responsible for loading
and providing access to merger-tree data. Below, we demonstrate how
to load data and what can be done with it.

Loading Merger-Tree Data

ytree can load merger-tree data from multiple sources using
the load command.

import ytree
a = ytree.load("consistent_trees/tree_0_0_0.dat")

This command will determine the correct format and read in the data
accordingly. For examples of loading each format, see below.

	Loading Data
	Amiga Halo Finder

	Consistent-Trees

	Rockstar Catalogs

	LHaloTree

	TreeFarm

	Saved Arbors

Working with Merger-Tree Data

Very little happens immediately after a dataset has been loaded. All tree
construction and data access occurs only on demand. After loading,
information such as the simulation box size, cosmological parameters, and
the available fields can be accessed.

>>> print (a.box_size)
100.0 Mpc/h
>>> print (a.hubble_constant, a.omega_matter, a.omega_lambda)
0.695 0.285 0.715
>>> print (a.field_list)
['scale', 'id', 'desc_scale', 'desc_id', 'num_prog', ...]

Similar to yt [http://yt-project.org/docs/dev/analyzing/fields.html],
ytree supports accessing fields by their native names as well as generalized
aliases. For more information on fields in ytree, see Fields in ytree.

How many trees are there?

As soon as any information about the collection of trees within the loaded
dataset is requested, an array will be constructed containing objects
representing the root of each tree, i.e., the last descendent halo. This
structure is accessed by querying the loaded Arbor directly. It can
also be accessed as a.trees.

>>> print (a.size)
Loading tree roots: 100%|██████| 5105985/5105985 [00:00<00:00, 505656111.95it/s]
327

Root Fields

Field data for all tree roots is accessed by querying the Arbor in a
dictionary-like manner.

>>> print (a["mass"])
Getting root fields: 100%|██████████████████| 327/327 [00:00<00:00, 9108.67it/s]
[6.57410072e+14 5.28489209e+14 5.18129496e+14 4.88920863e+14, ...,
 8.68489209e+11 8.68489209e+11 8.68489209e+11] Msun

ytree uses yt’s system for symbolic units [http://yt-project.org/docs/dev/analyzing/units/index.html], allowing for simple
unit conversion.

>>> print (a["virial_radius"].to("Mpc/h"))
[1.583027 1.471894 1.462154 1.434253 1.354779 1.341322 1.28617, ...,
 0.173696 0.173696 0.173696 0.173696 0.173696] Mpc/h

When dealing with cosmological simulations, care must be taken to distinguish
between comoving and proper reference frames. Please read An Important Note on Comoving and Proper Units before
your magical ytree journey begins.

Accessing Individual Trees

Individual trees can be accessed by indexing the Arbor object.

>>> print (a[0])
TreeNode[12900]

A TreeNode is one halo in a merger-tree.
The number is the universal identifier associated with halo. It is unique
to the whole arbor. Fields can be accessed for any given TreeNode in
the same dictionary-like fashion.

>>> print (a[0]["mass"])
657410071942446.1 Msun

The full lineage of the tree can be accessed by querying any TreeNode
with the tree keyword.

>>> my_tree = a[0]
>>> print (my_tree["tree"])
[TreeNode[12900] TreeNode[12539] TreeNode[12166] TreeNode[11796] ...
 TreeNode[591]]

Fields can be queried for the tree by including the field name.

>>> print (my_tree["tree", "virial_radius"])
[2277.73669065 2290.65899281 2301.43165468 2311.47625899 2313.99280576 ...
 434.59856115 410.13381295 411.25755396] kpc

A halo’s ancestors are stored as a list in the ancestors attribute.
The descendents are stored in a similar fashion.

>>> print (my_tree.ancestors)
[TreeNode[12539]]
>>> print (my_tree.ancestors[0].descendent)
TreeNode[12900]

Accessing the Progenitor Lineage of a Tree

Similar to the tree keyword, the prog keyword can be used to access
the line of main progenitors.

>>> print (my_tree["prog"])
[TreeNode[12900] TreeNode[12539] TreeNode[12166] TreeNode[11796] ...
 TreeNode[62]]
>>> print (my_tree["prog", "mass"])
[6.57410072e+14 6.57410072e+14 6.53956835e+14 6.50071942e+14 ...
 8.29496403e+13 7.72949640e+13 6.81726619e+13 5.99280576e+13] Msun

Customizing the Progenitor Line

By default, the progenitor line is defined as the line of the most
massive ancestors. This can be changed by calling the
set_selector.

>>> a.set_selector("max_field_value", "virial_radius")

New selector functions can also be supplied. These functions should
minimally accept a list of ancestors and return a single TreeNode.

>>> def max_value(ancestors, field):
... vals = np.array([a[field] for a in ancestors])
... return ancestors[np.argmax(vals)]
...
>>> ytree.add_tree_node_selector("max_field_value", max_value)
>>>
>>> a.set_selector("max_field_value", "mass")
>>> print (a[0]["prog"])

Saving Arbors and Trees

Arbors of any type can be saved to a universal file format with the
save_arbor function. These can be
reloaded with the load command. This
format is optimized for fast tree-building and field-access and so is
recommended for most situations.

>>> fn = a.save_arbor()
Setting up trees: 100%|███████████████████| 327/327 [00:00<00:00, 483787.45it/s]
Getting fields [1/1]: 100%|████████████████| 327/327 [00:00<00:00, 36704.51it/s]
Creating field arrays [1/1]: 100%|█| 613895/613895 [00:00<00:00, 7931878.47it/s]
>>> a2 = ytree.load(fn)

By default, all trees and all fields will be saved, but this can be
customized with the trees and fields keywords.

For convenience, individual trees can also be saved by calling
save_tree.

>>> fn = a[0].save_tree()
Creating field arrays [1/1]: 100%|████| 4897/4897 [00:00<00:00, 13711286.17it/s]
>>> a2 = ytree.load(fn)

An Important Note on Comoving and Proper Units

Users of yt are likely familiar with conversion from proper to comoving
reference frames by adding “cm” to a unit. For example, proper “Mpc”
becomes comoving with “Mpccm”. This conversion relies on all the data
being associated with a single redshift. This is not possible here
because the dataset has values for multiple redshifts. To account for
this, the proper and comoving unit systems are set to be equal to each
other.

>>> print (a.box_size)
100.0 Mpc/h
>>> print (a.box_size.to("Mpccm/h"))
100.0 Mpccm/h

Data should be assumed to be in the reference frame in which it
was saved. For length scales, this is typically the comoving frame.
When in doubt, the safest unit to use for lengths is “unitary”, which
a system normalized to the box size.

>>> print (a.box_size.to("unitary"))
1.0 unitary

Loading Data

Below are instructions for loading all supported datasets.

Amiga Halo Finder

The Amiga Halo Finder [http://popia.ft.uam.es/AHF/Download.html] format
stores data in a series of files, with one each per snapshot. Parameters
are stored in “.parameters” and “.log” files, halo information in
“.AHF_halos” files, and descendent/ancestor links are stored in “.AHF_mtree”
files. Make sure to keep all of these together. To load, provide the name
of the first “.parameter” file.

import ytree
a = ytree.load("ahf_halos/snap_N64L16_000.parameter",
 hubble_constant=0.7)

Note

Three important notes about loading AHF data:

	The dimensionless Hubble parameter is not provided in AHF
outputs. This should be supplied by hand using the
hubble_constant keyword. The default value is 1.0.

	There will be no “.AHF_mtree” file for index 0 as the
“.AHF_mtree” files store links between files N-1 and N.

	ytree is able to load data where the graph has been
calculated instead of the tree. However, even in this case,
only the tree is preserved in ytree. See the Amiga Halo
Finder Documentation [http://popia.ft.uam.es/AHF/Documentation.html]
for a discussion of the difference between graphs and trees.

Consistent-Trees

The consistent-trees [https://bitbucket.org/pbehroozi/consistent-trees]
format is typically one or a few files with a naming convention like
“tree_0_0_0.dat”. To load these files, just give the filename

import ytree
a = ytree.load("consistent_trees/tree_0_0_0.dat")

Rockstar Catalogs

Rockstar catalogs with the naming convention “out_*.list” will contain
information on the descendent ID of each halo and can be loaded
independently of consistent-trees. This can be useful when your
simulation has very few halos, such as in a zoom-in simulation. To
load in this format, simply provide the path to one of these files.

import ytree
a = ytree.load("rockstar/rockstar_halos/out_0.list")

LHaloTree

The LHaloTree [http://adsabs.harvard.edu/abs/2005Natur.435..629S]
format is typically one or more files with a naming convention like
“trees_063.0” that contain the trees themselves and a single file
with a suffix “.a_list” that contains a list of the scale factors
at the time of each simulation snapshot.

In addition to the LHaloTree files, ytree also requires additional
information about the simulation from a parameter file (in
Gadget [http://wwwmpa.mpa-garching.mpg.de/gadget/] format). At
minimum, the parameter file should contain the cosmological parameters
HubbleParam, Omega0, OmegaLambda, BoxSize, PeriodicBoundariesOn,
and ComovingIntegrationOn, and the unit parameters
UnitVelocity_in_cm_per_s, UnitLength_in_cm, and UnitMass_in_g.
If not specified explicitly (see below), a file with the extension
“.param” will be searched for in the directory containing the
LHaloTree files.

If all of the required files are in the same directory, an LHaloTree
catalog can be loaded from the path to one of the tree files.

import ytree
a = ytree.load("lhalotree/trees_063.0")

Both the scale factor and parameter files can be specified explicitly
through keyword arguments if they do not match the expected pattern
or are located in a different directory than the tree files.

a = ytree.load("lhalotree/trees_063.0",
 parameter_file="lhalotree/param.txt",
 scale_factor_file="lhalotree/a_list.txt")

The scale factors and/or parameters themselves can also be passed
explicitly from python.

import numpy as np
parameters = dict(HubbleParam=0.7, Omega0=0.3, OmegaLambda=0.7,
 BoxSize=62500, PeriodicBoundariesOn=1, ComovingIntegrationOn=1,
 UnitVelocity_in_cm_per_s=100000, UnitLength_in_cm=3.08568e21,
 UnitMass_in_g=1.989e+43)
scale_factors = [0.0078125, 0.012346 , 0.019608 , 0.032258 , 0.047811 ,
 0.051965 , 0.056419 , 0.061188 , 0.066287 , 0.071732 ,
 0.07754 , 0.083725 , 0.090306 , 0.097296 , 0.104713 ,
 0.112572 , 0.120887 , 0.129675 , 0.13895 , 0.148724 ,
 0.159012 , 0.169824 , 0.181174 , 0.19307 , 0.205521 ,
 0.218536 , 0.232121 , 0.24628 , 0.261016 , 0.27633 ,
 0.292223 , 0.308691 , 0.32573 , 0.343332 , 0.361489 ,
 0.380189 , 0.399419 , 0.419161 , 0.439397 , 0.460105 ,
 0.481261 , 0.502839 , 0.524807 , 0.547136 , 0.569789 ,
 0.59273 , 0.615919 , 0.639314 , 0.66287 , 0.686541 ,
 0.710278 , 0.734031 , 0.757746 , 0.781371 , 0.804849 ,
 0.828124 , 0.851138 , 0.873833 , 0.896151 , 0.918031 ,
 0.939414 , 0.960243 , 0.980457 , 1.]
a = ytree.load("lhalotree/trees_063.0",
 parameters=parameters,
 scale_factors=scale_factors)

TreeFarm

Merger-trees created with TreeFarm (ytree’s merger-tree
code for Gadget FoF/SUBFIND catalogs) can be loaded in by providing the
path to one of the catalogs created during the calculation.

import ytree
a = ytree.load("tree_farm/tree_farm_descendents/fof_subhalo_tab_000.0.h5")

Saved Arbors

Once merger-tree data has been loaded, it can be saved to a
universal format using save_arbor or
save_tree. These can be loaded by
providing the path to the primary hdf5 file.

import ytree
a = ytree.load("arbor/arbor.h5")

Saved Arbors from ytree 1.1

Arbors created with version 1.1 of ytree and earlier can be reloaded by
providing the single file created. It is recommended that arbors be
re-saved into the newer format as this will significantly improve
performance.

import ytree
a = ytree.load("arbor.h5")

Fields in ytree

ytree supports multiple types of fields, each representing numerical
values associated with each halo in the Arbor. These include the
native fields stored on disk, alias fields, derived fields, and
analysis fields.

The Field Info Container

Each Arbor contains a dictionary,
called field_info,
with relevant information for each available field. This information
can include the units, type of field, any dependencies or aliases, and
things relevant to reading the data from disk.

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> print (a.field_info["Rvir"])
{'description': 'Halo radius (kpc/h comoving).', 'units': 'kpc/h ', 'column': 11,
 'aliases': ['virial_radius']}
>>> print (a.field_info["mass"])
{'type': 'alias', 'units': 'Msun', 'dependencies': ['Mvir']}

Fields on Disk

Every field stored in the dataset’s files should be available within
the Arbor. The field_list contains a list of all fields on disk
with their native names.

>>> print (a.field_list)
['scale', 'id', 'desc_scale', 'desc_id', 'num_prog', ...]

Alias Fields

Because the various dataset formats use different naming conventions for
similar fields, ytree allows fields to be referred to by aliases. This
allows for a universal set of names for the most common fields. Many are
added by default, including “mass”, “virial_radius”, “position_<xyz>”,
and “velocity_<xyz>”. The list of available alias and derived fields
can be found in the derived_field_list.

print (a.derived_field_list)
['uid', 'desc_uid', 'scale_factor', 'mass', 'virial_mass', ...]

Additional aliases can be added with
add_alias_field.

>>> a.add_alias_field("amount_of_stuff", "mass", units="kg")
>>> print (a["amount_of_stuff"])
[1.30720461e+45, 1.05085632e+45, 1.03025691e+45, ...
1.72691772e+42, 1.72691772e+42, 1.72691772e+42]) kg

Derived Fields

Derived fields are functions of existing fields, including other
derived and alias fields. New derived fields are created by
providing a defining function and calling
add_derived_field.

>>> def potential_field(data):
... # data.arbor points to the parent Arbor
... return data["mass"] / data["virial_radius"]
...
>>> a.add_derived_field("potential", potential_field, units="Msun/Mpc")
[2.88624262e+14 2.49542426e+14 2.46280488e+14, ...
3.47503685e+12 3.47503685e+12 3.47503685e+12] Msun/Mpc

Field functions should only take a single argument, representing
the entity for which the field is defined. This argument will
also have access to the parent Arbor.

Analysis Fields

Analysis fields provide a means for saving the results of complicated
analysis for any halo in the Arbor. This would be operations
beyond derived fields, for example, things that might require loading
the original simulation snapshots. New analysis fields are created
with add_analysis_field and are
initialized to zero.

>>> a.add_analysis_field("saucer_sections", units="m**2")
>>> print (a[0]["tree", "saucer_sections"])
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0.,] m**2
>>> import numpy as np
>>> for t in a[0]["tree"]:
... t["saucer_sections"] = np.random.random() # complicated analysis
...
>>> print (a[0]["tree", "saucer_sections"])
[0.33919263 0.79557815 0.38264336 0.53073945 0.09634924 0.6035886, ...
 0.9506636 0.9094426 0.85436984 0.66779632 0.58816873] m**2

Analysis fields will be automatically saved when the Arbor is saved
with save_arbor.

Making Merger-trees from Gadget FoF/Subfind

The ytree TreeFarm can compute merger-trees either for all halos,
starting at the beginning of the simulation, or for specific halos,
starting at the final output and moving backward. These two
use-cases are covered separately. Halo catalogs must be in the form
created by the Gadget FoF halo finder or Subfind substructure
finder.

Computing a Full Merger-tree

TreeFarm accepts a yt time-series object over which the
merger-tree will be computed.

import yt
import ytree

ts = yt.DatasetSeries("data/groups_*/*.0.hdf5")
my_tree = ytree.TreeFarm(ts)
my_tree.trace_descendents("Group", filename="all_halos/")

The first argument to trace_descendents specifies the type
of halo object to use. This will typically be either “Group” for
FoF groups or Subhalo for Subfind groups.
This process will create a new halo catalogs with the additional
field representing the descendent ID for each halo. These can
be loaded using yt like any other catalogs. Once complete,
the final merger-tree can be
loaded into ytree.

Computing a Targeted Merger-tree

Computing a full merger-tree can be extremely expensive when
the simulation is large. Instead, merger-trees can be created
for specific halos in the final dataset, then working backward.
Below is an example of computing the merger-tree for only the
most massive halo.

import yt
import ytree

ds = yt.load("fof_subfind/groups_025/fof_subhalo_tab_025.0.hdf5")
i_max = np.argmax(ds.r["Group", "particle_mass"])
my_id = ds.r["particle_identifier"][i_max]

ts = yt.DatasetSeries("data/groups_*/*.0.hdf5")
my_tree = ytree.TreeFarm(ts)
my_tree.trace_ancestors("Group", my_id, filename="my_halo/")

Just as above, the resulting catalogs can then be loaded into
a TreeFarm Arbor.

Optimizing Merger-tree Creation

Computing merger-trees can often be an expensive task. Below
are some tips for speeding up the process.

Running in Parallel

ytree uses the parallel capabilities of yt to divide up the
halo ancestor/descendent search over multiple processors.
In order to do this, yt must be set up to run in parallel.
See here [http://yt-project.org/doc/analyzing/parallel_computation.html#setting-up-parallel-yt]
for instructions. Once this is done, a call to
yt.enable_parallelism() must be added to your script.

import yt
yt.enable_parallelism()
import ytree

ts = yt.DatasetSeries("data/groups_*/*.0.hdf5")
my_tree = ytree.TreeFarm(ts)
my_tree.trace_descendents("Group", filename="all_halos/")

That script must then be run with mpirun.

mpirun -np 4 python my_script.py

Optimizing Halo Candidate Selection

Halo ancestors and descendents are typically found by comparing
particle IDs between two halos. The method of selecting which
halos should be compared can greatly affect performance. By
default, TreeFarm will compare a halo against all halos
in the next dataset. This is both the most robust and slowest
method of matching ancestors and descendents. A smarter
method is to select candidate matches from only a region
around the target halo. For example, TreeFarm can be
configured to select halos from a sphere centered on the
current halo.

my_tree = ytree.TreeFarm(ts)
my_tree.set_selector("sphere", "virial_radius", factor=5)
my_tree.trace_descendents("Group", filename="all_halos/")

In the above example, candidate halos will be selected from a
sphere that is five times the value of the “virial_radius” field.
While this will speed up the calculation, a match will not be
found if the ancestor/descendent is outside of this region.
Some experimentation is recommended to find the optimal balance
between speed and robustness.

Currently, the “sphere” selector is the only other selection
method implemented, although others can be created easily.
For an example, see sphere_selector.

Searching for Fewer Ancestors

When computing a merger-tree for specific halos
(Computing a Targeted Merger-tree), you only be interested in the most
massive or the few most massive progenitors. If this is the
case, TreeFarm can be configured to end the ancestor
search when these have been found, rather than searching for
all possible progenitors.

The set_ancestry_filter function places a filter on which
ancestors of any given halo will be returned and followed in
successive rounds of the merger-tree process. The
“most_massive” filter instructs the TreeFarm to only
keep the most massive ancestor. This will greatly reduce
the number of halos included in the merger-tree and,
therefore, speed up the calculation considerably. For an
example of how to create a new filter, see
most_massive.

The filtering will only occur after all candidates have been
checked for ancestry. An additional operation an be added to
end the ancestry search after certain criteria have been met.
In the call to set_ancestry_short below, the ancestry
search will end as soon as an ancestor with at least 50% of
the mass of the target halo has been found. For an example
of how to create a new function of this type, see
most_massive.

ts = yt.DatasetSeries("data/groups_*/*.0.hdf5")
my_tree = ytree.TreeFarm(ts)
my_tree.trace_ancestors("Group", my_id, filename="my_halo/")
my_tree.set_ancestry_filter("most_massive")
my_tree.set_ancestry_short("above_mass_fraction", 0.5)

Community Code of Conduct

ytree is a project by members of the yt community [http://yt-project.org/community.html]. As such, we stand by the
yt Community Code of Conduct [http://yt-project.org/community.html#codeofconduct].

Below is the ytree version of this code.

ytree Community Code of Conduct

The community of participants in open source Scientific projects is
made up of members from around the globe with a diverse set of skills,
personalities, and experiences. It is through these differences that
our community experiences success and continued growth. We expect
everyone in our community to follow these guidelines when interacting
with others both inside and outside of our community. Our goal is to
keep ours a positive, inclusive, successful, and growing community.

As members of the community,

	We pledge to treat all people with respect and provide a harassment-
and bullying-free environment, regardless of sex, sexual orientation
and/or gender identity, disability, physical appearance, body size,
race, nationality, ethnicity, and religion. In particular, sexual
language and imagery, sexist, racist, or otherwise exclusionary
jokes are not appropriate.

	We pledge to respect the work of others by recognizing
acknowledgment/citation requests of original authors. As authors, we
pledge to be explicit about how we want our own work to be cited or
acknowledged.

	We pledge to welcome those interested in joining the community, and
realize that including people with a variety of opinions and
backgrounds will only serve to enrich our community. In particular,
discussions relating to pros/cons of various technologies,
programming languages, and so on are welcome, but these should be
done with respect, taking proactive measure to ensure that all
participants are heard and feel confident that they can freely
express their opinions.

	We pledge to welcome questions and answer them respectfully, paying
particular attention to those new to the community. We pledge to
provide respectful criticisms and feedback in forums, especially in
discussion threads resulting from code contributions.

	We pledge to be conscientious of the perceptions of the wider
community and to respond to criticism respectfully. We will strive
to model behaviors that encourage productive debate and
disagreement, both within our community and where we are
criticized. We will treat those outside our community with the same
respect as people within our community.

We pledge to help the entire community follow the code of conduct, and
to not remain silent when we see violations of the code of conduct. We
will take action when members of our community violate this code such
as contacting the project manager, Britton Smith
(brittonsmith@gmail.com). All emails will be treated with the strictest
confidence or talking privately with the person.

This code of conduct applies to all community situations online and
offline, including mailing lists, forums, social media, conferences,
meetings, associated social events, and one-to-one interactions.

This Community Code of Conduct comes the
 yt Community Code
of Conduct, which was adapted from the
 Astropy
Community Code of Conduct, which was partially inspired by the PSF
code of conduct.

Contributing to ytree

ytree is a community project and it will be better with your
contribution.

Contributions are welcome in the form of code, documentation, or
just about anything. If you’re interested in getting involved,
please do!

ytree is developed using the same conventions as yt. The yt
Developer Guide [http://yt-project.org/docs/dev/developing/index.html]
is a good reference for code style, communication with other developers,
working with git, and issuing pull requests. For information specific
to ytree, such as testing and adding support for new file formats, see
the ytree Developer Guide [http://ytree.readthedocs.io/en/latest/Developing.html].

If you’d like to know more, contact Britton Smith (brittonsmith@gmail.com).

You can also find help on the yt developers list [http://lists.spacepope.org/listinfo.cgi/yt-dev-spacepope.org].

Developer Guide

ytree is developed using the same conventions as yt. The yt
Developer Guide [http://yt-project.org/docs/dev/developing/index.html]
is a good reference for code style, communication with other developers,
working with git, and issuing pull requests. Below is a brief guide of
aspects that are specific to ytree.

Contributing in a Nutshell

Step zero, get out of that nutshell!

After that, the process for making contributions to ytree is roughly as
follows:

	Fork the main ytree repository [https://github.com/brittonsmith/ytree].

	Create a new branch.

	Make changes.

	Run tests. Return to step 3, if needed.

	Issue pull request.

The yt Developer Guide and github [https://github.com/] documentation
will help with the mechanics of git and pull requests.

Testing

The ytree source comes with a series of tests that can be run to
ensure nothing unexpected happens after changes have been made. These
tests will automatically run when a pull request is issued or updated,
but they can also be run locally very easily. At present, the suite
of tests for ytree takes about three minutes to run.

Testing Data

The first order of business is to obtain the sample datasets. See
Sample Data for how to do so. Next, ytree must be configure to
know the location of this data. This is done by creating a configuration
file in your home directory at the location ~/.config/ytree/ytreerc.

$ mkdir -p ~/.config/ytree
$ echo [ytree] > ~/.config/ytree/ytreerc
$ echo test_data_dir = /Users/britton/ytree_data >> ~/.config/ytree/ytreerc
$ cat ~/.config/ytree/ytreerc
[ytree]
test_data_dir = /Users/britton/ytree_data

This path should point to the outer directory containing all the
sample datasets.

Run the Tests

Before running the tests, you will the pytest and flake8 packages.
These can be installed with pip.

$ pip install pytest flake8

Once installed, the tests are run from the top level of the ytree
source.

$ pytest tests
============================= test session starts ==============================
platform darwin -- Python 3.6.0, pytest-3.0.7, py-1.4.32, pluggy-0.4.0
rootdir: /Users/britton/Documents/work/yt/extensions/ytree/ytree, inifile:
collected 16 items

tests/test_arbors.py
tests/test_flake8.py .
tests/test_saving.py ...
tests/test_treefarm.py ..
tests/test_ytree_1x.py ..

========================= 16 passed in 185.03 seconds ==========================

Adding Support for a New Format

The Arbor class is reasonably
generalized such that adding support for a new file format
should be relatively straightforward. The existing frontends
also provide guidance for what must be done. Below is a brief
guide for how to proceed. If you are interested in doing this,
we will be more than happy to help!

Where do the files go?

As in yt, the code specific to one file format is referred to as a
“frontend”. Within the ytree source, each frontend is located in
its own directory within ytree/arbor/frontends. Name your
directory using lowercase and underscores and put it in there.

To allow your frontend to be directly importable at run-time, add
the name to the _frontends list in ytree/arbor/frontends/api.py.

Building Your Frontend

To build a new frontend, you will need to make frontend-specific
subclasses for a few components. The easiest way to do this is
to start with a blank Arbor subclass first. Create a sample
script that loads your data with load, prints
the number of trees, and queries some fields. Within the base classes,
the necessary functions will raise a NotImplementedError if you
have not added them yet. Keep running your script and implementing
the function raising this error and before you know it, you’ll be
done.

The components and the files in which they belong are:

	The Arbor itself (arbor.py).

	The file i/o (io.py).

	Recognizing frontend-specific fields (fields.py).

In addition to this, you will need to add a file called __init__.py,
which will allow your code to be imported. This file should minimally
import the frontend-specific Arbor class. For example, the
consistent-trees __init__.py looks like this:

from ytree.arbor.frontends.consistent_trees.arbor import \
 ConsistentTreesArbor

Two Types of Arbors

There are generally two types of merger-tree data that ytree
ingests:

1. all merger-tree data (full trees, halos, etc.) contained within
a single file. An example of this is the consistent-trees frontend.

2. halos in files grouped by redshift (halo catalogs) that contain
the halo id for the descendent halo which lives in the next catalog.
An example of this is the rockstar frontend.

Depending on your case, different base classes should be subclassed.
This is discussed below.

The _is_valid Function

Within every Arbor subclass should appear a function called
_is_valid. This function is used by load
to determine if the provide file is the correct type. This function
can examine the file’s naming convention and/or open it and inspect
its contents, whatever is required to uniquely identify your frontend.
Have a look at the various examples.

Merger-Tree Data in One File (or a few)

If this is your case, then the consistent-trees and “ytree” frontends
are the best examples to follow.

In arbor.py, your subclass of Arbor should implement two
functions, _parse_parameter_file and _plant_trees.

_parse_parameter_file: This is the first thing called when your
dataset is loaded. It is responsible for determining things like
box size, cosmological parameters, and the list of fields.

_plant_trees: This function is responsible for constructing the
array containing the roots of all trees in the Arbor. This
should not fully build the trees, but just create
TreeNode instances for each root
and put them in the array.

In io.py, you will implement the machinery responsible for
reading field data from disk. You must create a subclass of
the TreeFieldIO class and implement
the _read_fields function. This function accepts a single
root node (a TreeNode that is the root of a tree) and a list
of fields and should return a dictionary with NumPy arrays for
each field.

Halo Catalog-style Data

If this is your case, then the rockstar and tree_farm frontends
are the best examples to follow.

For this type of data, you will subclass the
CatalogArbor class, which is itself a
subclass of Arbor designed for this
type of data.

In arbor.py, your subclass should implement two functions,
_parse_parameter_file and _get_data_files. The purpose of
_parse_parameter_file is described above.

_get_data_files: This type of data is usually loaded by
providing one of the set of files. This function needs to figure
out how many other files there are and their names and construct a
list to be saved.

In io.py, you will create a subclass of
CatalogDataFile and implement two functions:
_parse_header and _read_fields.

_parse_header: This function reads any metadata specific to this
halo catalog. For exmaple, you might get the current redshift here.

_read_fields: This function is responsible for reading field
data from disk. This should minimally take a list of fields and
return a dictionary with NumPy arrays for each field for all halos
contained in the file. It should also, optionally, take a list of
TreeNode instances and return fields
only for them.

Field Units and Aliases (fields.py)

The FieldInfoContainer class holds
information about field names and units. Your subclass can define
two tuples, known_fields and alias_fields. The
known_fields tuple is used to set units for fields on disk.
This is useful especially if there is no way to get this information
from the file. The convention for each entry is (name on disk, units).

By creating aliases to standardized names, scripts can be run on
multiple types of data with little or no alteration for
frontend-specific field names. This is done with the alias_fields
tuple. The convention for each entry is (alias name, name on disk,
field units).

from ytree.arbor.fields import \
 FieldInfoContainer

class NewCodeFieldInfo(FieldInfoContainer):
 known_fields = (
 # name on disk, units
 ("Mass", "Msun/h"),
 ("PX", "kpc/h"),
)

 alias_fields = (
 # alias name, name on disk, units for alias
 ("mass", "Mass", "Msun"),
 ("position_x", "PX", "Mpc/h"),
 ...
)

You made it!

That’s all there is to it! Now you too can do whatever it is
people do with merger-trees. There are probably important things
that were left out of this document. If you find any, please consider
making an addition or opening an issue. If you’re stuck anywhere,
don’t hesitate to ask for help. If you’ve gotten this far, we
really want to see you make it to the finish!

Everyone Loves Samples

It would be especially great if you could provide a small sample dataset
with your new frontend, something less than a few hundred MB if possible.
This will ensure that your new frontend never gets broken and
will also help new users get started. Once you have some data, make an
addition to the arbor tests by following the example in
tests/test_arbors.py. Then, contact Britton Smith to arrange for
your sample data to be added to the ytree data [https://girder.hub.yt/#collection/59835a1ee2a67400016a2cda]
collection on the yt Hub [https://girder.hub.yt/].

Ok, now you’re totally done. Take the rest of the afternoon off.

Help

If you encounter problems, we want to help and there are lots
of places to get help. As an extension of the yt project [http://yt-project.org/], we are members of the yt community.
Any questions regarding ytree can be posted to the yt users list [http://lists.spacepope.org/listinfo.cgi/yt-users-spacepope.org].
You will also find interactive help on the yt slack channel [http://yt-project.org/docs/dev/help/index.html#go-on-slack-or-irc-to-ask-a-question].

Bugs and feature requests can also be posted on the ytree issues
page [https://github.com/brittonsmith/ytree/issues].

See you out there!

Citing ytree

If you use ytree in your work, please cite the following:

Britton Smith, & Meagan Lang. (2018, February 16).
ytree: merger-tree toolkit. Zenodo.
http://doi.org/10.5281/zenodo.1174374

For BibTeX users:

@misc{britton_smith_2018_1174374,
 author = {Britton Smith and
 Meagan Lang},
 title = {ytree: merger-tree toolkit},
 month = feb,
 year = 2018,
 doi = {10.5281/zenodo.1174374},
 url = {https://doi.org/10.5281/zenodo.1174374}
}

If possible, please also add a footnote pointing to
http://ytree.readthedocs.io.

API Reference

Working with Merger-Trees

The load can load all supported
merger-tree formats. Once loaded, the
save_arbor and
save_tree functions can be
used to save the entire arbor or individual trees.

	load(filename[, method])

	Load an Arbor, determine the type automatically.

	Arbor(filename)

	Base class for all Arbor classes.

	save_arbor([filename, fields, trees, …])

	Save the arbor to a file.

	save_tree([filename, fields])

	Save the tree to a file.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

	TreeNodeSelector(function[, args, kwargs])

	The TreeNodeSelector is responsible for choosing which one of a halo’s ancestors to return when querying the line of main progenitors for a halo.

	add_tree_node_selector(name, function)

	Add a TreeNodeSelector to the registry of known selectors, so they can be chosen with set_selector.

	max_field_value(ancestors, field)

	Return the TreeNode with the maximum value of the given field.

	min_field_value(ancestors, field)

	Return the TreeNode with the minimum value of the given field.

Making Merger-Trees

	TreeFarm(time_series[, setup_function])

	TreeFarm is the merger-tree creator for Gadget FoF and Subfind halo catalogs.

	trace_ancestors(halo_type, root_ids[, …])

	Trace the ancestry of a given set of halos.

	trace_descendents(halo_type[, fields, filename])

	Trace the descendents of all halos.

	set_selector(selector, *args, **kwargs)

	Set the method for selecting candidate halos for tracing halo ancestry.

	set_ancestry_checker(ancestry_checker, …)

	Set the method for determing if a halo is the ancestor of another halo.

	set_ancestry_filter(ancestry_filter, *args, …)

	Select a method for determining which ancestors are kept.

	set_ancestry_short(ancestry_short, *args, …)

	Select a method for cutting short the ancestry search.

	AncestryChecker(function[, args, kwargs])

	An AncestryCheck is a function that is responsible for determining whether one halo is an ancestor of another.

	add_ancestry_checker(name, function)

	Add an ancestry checking function to the registry.

	common_ids(descendent_ids, ancestor_ids[, …])

	Determine if at least a given fraction of ancestor’s member particles are in the descendent.

	AncestryFilter(function[, args, kwargs])

	An AncestryFilter takes a halo and a list of ancestors and returns a filtered list of filtered list of ancestors.

	add_ancestry_filter(name, function)

	Add an ancestry filter function to the registry.

	most_massive(halo, ancestors)

	Return only the most massive ancestor.

	AncestryShort(function[, args, kwargs])

	An AncestryShort takes a halo and an ancestor halo and determines if the ancestry search should come to an end.

	add_ancestry_short(name, function)

	Add an ancestry short-out function to the registry.

	above_mass_fraction(halo, ancestor, fraction)

	Return only the most massive ancestor.

	HaloSelector(function[, args, kwargs])

	A HaloSelector is a function that is responsible for creating a list of ids of halos that are potentially ancestors of a given halo.

	add_halo_selector(name, function)

	Add a HaloSelector to the registry of known selectors, so they can be chosen with set_selector.

	sphere_selector(hc, ds2, radius_field[, …])

	Select halos within a sphere around the target halo.

	all_selector(hc, ds2)

	Return all halos from the ancestor dataset.

Internal Classes

	Arbor(filename)

	Base class for all Arbor classes.

	CatalogArbor(filename)

	Base class for Arbors created from a series of halo catalog files where the descendent ID for each halo has been pre-determined.

	FieldInfoContainer(arbor)

	A container for information about fields.

	FieldContainer(arbor)

	A container for field data.

	FakeFieldContainer(arbor[, name])

	A fake field data container used to calculate dependencies.

	FieldIO(arbor)

	Base class for FieldIO classes.

	TreeFieldIO(arbor)

	IO class for getting fields for a tree.

	RootFieldIO(arbor)

	IO class for getting fields for the roots of all trees.

	FallbackRootFieldIO(arbor)

	Class for getting root fields from arbors that have no specialized storage for root fields.

	DataFile(filename)

	Base class for data files.

	CatalogDataFile(filename, arbor)

	Base class for halo catalog files.

	TreeNode(uid[, arbor, root])

	Class for objects stored in Arbors.

	TreeNodeSelector(function[, args, kwargs])

	The TreeNodeSelector is responsible for choosing which one of a halo’s ancestors to return when querying the line of main progenitors for a halo.

	AHFArbor(filename[, hubble_constant])

	Arbor for Amiga Halo Finder data.

	AHFFieldInfo(arbor)

	

	AHFDataFile(filename, arbor)

	

	ArborArbor(filename)

	Class for Arbors created with ytree version 1.1.0 or earlier.

	ArborArborFieldInfo(arbor)

	

	ArborArborTreeFieldIO(arbor)

	

	ArborArborRootFieldIO(arbor)

	

	ConsistentTreesArbor(filename)

	Arbors from consistent-trees output files.

	ConsistentTreesFieldInfo(arbor)

	

	ConsistentTreesDataFile(filename)

	

	ConsistentTreesTreeFieldIO(arbor)

	

	LHaloTreeArbor(*args, **kwargs)

	Arbors for LHaloTree data.

	LHaloTreeFieldInfo(arbor)

	

	LHaloTreeTreeFieldIO(arbor)

	

	LHaloTreeRootFieldIO(arbor)

	

	RockstarArbor(filename)

	Class for Arbors created from Rockstar out_*.list files.

	RockstarFieldInfo(arbor)

	

	RockstarDataFile(filename, arbor)

	

	TreeFarmArbor(filename)

	Class for Arbors created with TreeFarm.

	TreeFarmFieldInfo(arbor)

	

	TreeFarmDataFile(filename, arbor)

	

	TreeFarmTreeFieldIO(arbor)

	

	YTreeArbor(filename)

	Class for Arbors created from the save_arbor or save_tree functions.

	YTreeDataFile(filename)

	

	YTreeTreeFieldIO(arbor)

	

	YTreeRootFieldIO(arbor)

	

ytree.arbor.arbor.load

	
ytree.arbor.arbor.load(filename, method=None, **kwargs)

	Load an Arbor, determine the type automatically.

	filenamestring

	Input filename.

	methodoptional, string

	The type of Arbor to be loaded. Existing types are:
ConsistentTrees, Rockstar, TreeFarm, YTree. If not
given, the type will be determined based on characteristics
of the input file.

	**kwargsoptional, dict

	Additional keyword arguments are passed to _is_valid and
the determined type.

Arbor

>>> import ytree
>>> # saved Arbor
>>> a = ytree.load("arbor/arbor.h5")
>>> # consistent-trees output
>>> a = ytree.load("rockstar_halos/trees/tree_0_0_0.dat")
>>> # Rockstar catalogs
>>> a = ytree.load("rockstar_halos/out_0.list")
>>> # TreeFarm catalogs
>>> a = ytree.load("my_halos/fof_subhalo_tab_025.0.h5")
>>> # LHaloTree catalogs
>>> a = ytree.load("my_halos/trees_063.0")
>>> # Amiga Halo Finder
>>> a = ytree.load("ahf_halos/snap_N64L16_000.parameter",
... hubble_constant=0.7)

ytree.arbor.arbor.Arbor

	
class ytree.arbor.arbor.Arbor(filename)

	Base class for all Arbor classes.

Loads a merger-tree output file or a series of halo catalogs
and create trees, stored in an array in
trees.
Arbors can be saved in a universal format with
save_arbor. Also, provide some
convenience functions for creating YTArrays and YTQuantities and
a cosmology calculator.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units)

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	save_arbor([filename, fields, trees, …])

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a YTArray using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	quan

	Create a YTQuantity using the Arbor’s unit registry.

	size

	Return length of tree list.

	trees

	Array containing all trees in the arbor.

	unit_registry

	Unit system registry.

ytree.arbor.arbor.Arbor.save_arbor

	
Arbor.save_arbor(filename='arbor', fields=None, trees=None, max_file_size=524288)

	Save the arbor to a file.

The saved arbor can be re-loaded as an arbor.

	filenameoptional, string

	Output file keyword. If filename ends in “.h5”,
the main header file will be just that. If not,
filename will be <filename>/<basename>.h5.
Default: “arbor”.

	fieldsoptional, list of strings

	The fields to be saved. If not given, all
fields will be saved.

	header_filenamestring

	The filename of the saved arbor.

>>> import ytree
>>> a = ytree.load("rockstar_halos/trees/tree_0_0_0.dat")
>>> fn = a.save_arbor()
>>> # reload it
>>> a2 = ytree.load(fn)

ytree.arbor.tree_node.TreeNode.save_tree

	
TreeNode.save_tree(filename=None, fields=None)

	Save the tree to a file.

The saved tree can be re-loaded as an arbor.

	filenameoptional, string

	Output file keyword. Main header file will be named
<filename>/<filename>.h5.
Default: “tree_<uid>”.

	fieldsoptional, list of strings

	The fields to be saved. If not given, all
fields will be saved.

	filenamestring

	The filename of the saved arbor.

>>> import ytree
>>> a = ytree.load("rockstar_halos/trees/tree_0_0_0.dat")
>>> # save the first tree
>>> fn = a[0].save_tree()
>>> # reload it
>>> a2 = ytree.load(fn)

ytree.arbor.arbor.Arbor.set_selector

	
Arbor.set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

This sets the manner in which halo progenitors are
chosen from a list of ancestors. The most obvious example
is to select the most massive ancestor.

	selectorstring

	Name of the selector to be used.

Any additional arguments and keywords to be provided to
the selector function should follow.

>>> import ytree
>>> a = ytree.load("rockstar_halos/trees/tree_0_0_0.dat")
>>> a.set_selector("max_field_value", "mass")

ytree.arbor.tree_node_selector.TreeNodeSelector

	
class ytree.arbor.tree_node_selector.TreeNodeSelector(function, args=None, kwargs=None)

	The TreeNodeSelector is responsible for choosing which one of a
halo’s ancestors to return when querying the line of main
progenitors for a halo.

	ancestorslist of TreeNode objects

	List of TreeNode objects from which to select.

The function should return a single TreeNode.

>>> import ytree
>>> def max_value(ancestors, field):
... vals = np.array([a[field] for a in ancestors])
... return ancestors[np.argmax(vals)]
>>> ytree.add_tree_node_selector("max_field_value", max_value)
>>> a = ytree.load("tree_0_0_0.dat")
>>> a.set_selector("max_field_value", "mass")
>>> print (a[0]["prog"])

	
__init__(function, args=None, kwargs=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(function[, args, kwargs])

	Initialize self.

ytree.arbor.tree_node_selector.add_tree_node_selector

	
ytree.arbor.tree_node_selector.add_tree_node_selector(name, function)

	Add a TreeNodeSelector to the registry of known selectors, so they
can be chosen with set_selector.

	namestring

	Name of the selector.

	functioncallable

	The associated function.

>>> import ytree
>>> def max_value(ancestors, field):
... vals = np.array([a[field] for a in ancestors])
... return ancestors[np.argmax(vals)]
>>> ytree.add_tree_node_selector("max_field_value", max_value)
>>> a = ytree.load("tree_0_0_0.dat")
>>> a.set_selector("max_field_value", "mass")
>>> print (a[0]["prog"])

ytree.arbor.tree_node_selector.max_field_value

	
ytree.arbor.tree_node_selector.max_field_value(ancestors, field)

	Return the TreeNode with the maximum value of the given field.

	ancestorslist of TreeNode objects

	List of TreeNode objects from which to select.

	fieldstring

	Field to be used for selection.

TreeNode object

ytree.arbor.tree_node_selector.min_field_value

	
ytree.arbor.tree_node_selector.min_field_value(ancestors, field)

	Return the TreeNode with the minimum value of the given field.

	ancestorslist of TreeNode objects

	List of TreeNode objects from which to select.

	fieldstring

	Field to be used for selection.

TreeNode object

ytree.tree_farm.tree_farm.TreeFarm

	
class ytree.tree_farm.tree_farm.TreeFarm(time_series, setup_function=None)

	TreeFarm is the merger-tree creator for Gadget FoF and Subfind
halo catalogs.

TreeFarm can be used to create a merger-tree for the full set of
halos, starting from the first catalog, or can be used to trace the
ancestry of specific halos, starting from the last catalog. The
merger-tree process will create a new set of halo catalogs,
containing necessary fields (positions, velocities, masses),
user-requested fields, and descendent IDs for each halo. These
halo catalogs can be loaded at yt datasets.

	time_seriesyt DatasetSeries object

	A yt time-series object containing the datasets over which
the merger-tree will be calculated.

	setup_functionoptional, callable

	A function that accepts a yt Dataset object and performs any
setup, such as adding derived fields.

To create a full merger tree:

>>> import nummpy as np
>>> import yt
>>> import ytree
>>> from ytree.tree_farm import TreeFarm
>>> ts = yt.DatasetSeries("data/groups_*/fof_subhalo_tab*.0.hdf5")
>>> my_tree = TreeFarm(ts)
>>> my_tree.trace_descendents("Group", filename="all_halos/")
>>> a = ytree.load("all_halos/fof_subhalo_tab_000.0.h5")
>>> m = a["particle_mass"]
>>> i = np.argmax(m)
>>> print (a.trees[i]["prog", "particle_mass").to("Msun/h"))

To create a merger tree for a specific halo or set of halos:

>>> import nummpy as np
>>> import yt
>>> import ytree
>>> from ytree.tree_farm import TreeFarm
>>> ts = yt.DatasetSeries("data/groups_*/fof_subhalo_tab*.0.hdf5")
>>> ds = yt[-1]
>>> i = np.argmax(ds.r["Group", "particle_mass"].d)
>>> my_ids = ds.r["Group", "particle_identifier"][i_max]
>>> my_tree = TreeFarm(ts)
>>> my_tree.set_ancestry_filter("most_massive")
>>> my_tree.set_ancestry_short("above_mass_fraction", 0.5)
>>> my_tree.trace_ancestors("Group", my_ids, filename="my_halos/")
>>> a = ytree.load("my_halos/fof_subhalo_tab_025.0.h5")
>>> print (a[0]["prog", "particle_mass").to("Msun/h"))

	
__init__(time_series, setup_function=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(time_series[, setup_function])

	Initialize self.

	set_ancestry_checker(ancestry_checker, …)

	Set the method for determing if a halo is the ancestor of another halo.

	set_ancestry_filter(ancestry_filter, *args, …)

	Select a method for determining which ancestors are kept.

	set_ancestry_short(ancestry_short, *args, …)

	Select a method for cutting short the ancestry search.

	set_selector(selector, *args, **kwargs)

	Set the method for selecting candidate halos for tracing halo ancestry.

	trace_ancestors(halo_type, root_ids[, …])

	Trace the ancestry of a given set of halos.

	trace_descendents(halo_type[, fields, filename])

	Trace the descendents of all halos.

ytree.tree_farm.tree_farm.TreeFarm.trace_ancestors

	
TreeFarm.trace_ancestors(halo_type, root_ids, fields=None, filename=None)

	Trace the ancestry of a given set of halos.

A merger-tree for a specific set of halos will be created,
starting with the last halo catalog and moving backward.

	halo_typestring

	The type of halo, typically “FOF” for FoF groups or
“Subfind” for subhalos.

	root_idsinteger or array of integers

	The halo IDs from the last halo catalog for the
targeted halos.

	fieldsoptional, list of strings

	List of additional fields to be saved to halo catalogs.

	filenameoptional, string

	Directory in which merger-tree catalogs will be saved.

ytree.tree_farm.tree_farm.TreeFarm.trace_descendents

	
TreeFarm.trace_descendents(halo_type, fields=None, filename=None)

	Trace the descendents of all halos.

A merger-tree for all halos will be created, starting
with the first halo catalog and moving forward.

	halo_typestring

	The type of halo, typically “FOF” for FoF groups or
“Subfind” for subhalos.

	fieldsoptional, list of strings

	List of additional fields to be saved to halo catalogs.

	filenameoptional, string

	Directory in which merger-tree catalogs will be saved.

ytree.tree_farm.tree_farm.TreeFarm.set_selector

	
TreeFarm.set_selector(selector, *args, **kwargs)

	Set the method for selecting candidate halos for tracing
halo ancestry.

The default selector is “all”, i.e., check every halo for a
possible match. This can be slow. The “sphere” selector
can be used to specify that only halos within some sphere
be checked.

	selectorstring

	Name of selector.

ytree.tree_farm.tree_farm.TreeFarm.set_ancestry_checker

	
TreeFarm.set_ancestry_checker(ancestry_checker, *args, **kwargs)

	Set the method for determing if a halo is the ancestor of
another halo.

The default method defines an ancestor as a halo where at least
50% of its particles are found in the descendent.

	ancestry_checkerstring

	Name of checking method.

ytree.tree_farm.tree_farm.TreeFarm.set_ancestry_filter

	
TreeFarm.set_ancestry_filter(ancestry_filter, *args, **kwargs)

	Select a method for determining which ancestors are kept.
The kept ancestors will have their ancestries tracked. This
can be used to speed up merger-trees for targeted halos by
specifying that only the most massive ancestor be kept.

	ancestry_filterstring

	Name of filter method.

ytree.tree_farm.tree_farm.TreeFarm.set_ancestry_short

	
TreeFarm.set_ancestry_short(ancestry_short, *args, **kwargs)

	Select a method for cutting short the ancestry search.

This can be used to speed up merger-trees for targeted halos by
specifying that the search come to an end when an ancestor with
greater than 50% of the halo’s mass has been found, thereby
ensuring that the most massive halo has already been found.

	ancestry_shortstring

	Name of short-out method.

ytree.tree_farm.ancestry_checker.AncestryChecker

	
class ytree.tree_farm.ancestry_checker.AncestryChecker(function, args=None, kwargs=None)

	An AncestryCheck is a function that is responsible for determining
whether one halo is an ancestor of another.

	descendent_idslist of ints

	Member ids for first halo.

	ancestor_idslist of int

	Member ids for second halo.

The function should return True or False.

	
__init__(function, args=None, kwargs=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(function[, args, kwargs])

	Initialize self.

ytree.tree_farm.ancestry_checker.add_ancestry_checker

	
ytree.tree_farm.ancestry_checker.add_ancestry_checker(name, function)

	Add an ancestry checking function to the registry.

ytree.tree_farm.ancestry_checker.common_ids

	
ytree.tree_farm.ancestry_checker.common_ids(descendent_ids, ancestor_ids, threshold=0.5)

	Determine if at least a given fraction of ancestor’s member particles
are in the descendent.

	descendent_idslist of ints

	Member ids for first halo.

	ancestor_idslist of int

	Member ids for second halo.

	thresholdfloat, optional

	Critical fraction of ancestor’s particles ending up in the
descendent to be considered a true ancestor. Default: 0.5.

True or False

ytree.tree_farm.ancestry_filter.AncestryFilter

	
class ytree.tree_farm.ancestry_filter.AncestryFilter(function, args=None, kwargs=None)

	An AncestryFilter takes a halo and a list of ancestors and
returns a filtered list of filtered list of ancestors. For
example, a filter could return only the most massive ancestor.

	halo: halo data container

	Data container of the descendent halo.

	ancestorslist of halo data containers

	List of data containers for the ancestor halos.

The function should return a list of data containers.

	
__init__(function, args=None, kwargs=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(function[, args, kwargs])

	Initialize self.

ytree.tree_farm.ancestry_filter.add_ancestry_filter

	
ytree.tree_farm.ancestry_filter.add_ancestry_filter(name, function)

	Add an ancestry filter function to the registry.

ytree.tree_farm.ancestry_filter.most_massive

	
ytree.tree_farm.ancestry_filter.most_massive(halo, ancestors)

	Return only the most massive ancestor.

	halo: halo data container

	Data container of the descendent halo.

	ancestorslist of halo data containers

	List of data containers for the ancestor halos.

	filtered_ancestorslist of halo data containers

	List containing data container of most massive halo.

ytree.tree_farm.ancestry_short.AncestryShort

	
class ytree.tree_farm.ancestry_short.AncestryShort(function, args=None, kwargs=None)

	An AncestryShort takes a halo and an ancestor halo and
determines if the ancestry search should come to an end.

	halo: halo data container

	Data container of the descendent halo.

	ancestorhalo data container

	Data container for the ancestor halo.

The function should return True or False.

	
__init__(function, args=None, kwargs=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(function[, args, kwargs])

	Initialize self.

ytree.tree_farm.ancestry_short.add_ancestry_short

	
ytree.tree_farm.ancestry_short.add_ancestry_short(name, function)

	Add an ancestry short-out function to the registry.

ytree.tree_farm.ancestry_short.above_mass_fraction

	
ytree.tree_farm.ancestry_short.above_mass_fraction(halo, ancestor, fraction)

	Return only the most massive ancestor.

	halo: halo data container

	Data container of the descendent halo.

	ancestorhalo data container

	Data containers for the ancestor halo.

True or False

ytree.tree_farm.halo_selector.HaloSelector

	
class ytree.tree_farm.halo_selector.HaloSelector(function, args=None, kwargs=None)

	A HaloSelector is a function that is responsible for creating a list
of ids of halos that are potentially ancestors of a given halo.

	hchalo container object

	Halo container associated with the target halo.

	ds2halo catalog-type dataset

	The dataset of the ancestor halos.

The function should return a list of integers representing the ids
of potential halos to check for ancestry.

	
__init__(function, args=None, kwargs=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(function[, args, kwargs])

	Initialize self.

ytree.tree_farm.halo_selector.add_halo_selector

	
ytree.tree_farm.halo_selector.add_halo_selector(name, function)

	Add a HaloSelector to the registry of known selectors, so they
can be chosen with
set_selector.

	namestring

	Name of the selector.

	functioncallable

	The associated function.

ytree.tree_farm.halo_selector.sphere_selector

	
ytree.tree_farm.halo_selector.sphere_selector(hc, ds2, radius_field, factor=1, min_radius=None)

	Select halos within a sphere around the target halo.

	hchalo container object

	Halo container associated with the target halo.

	ds2halo catalog-type dataset

	The dataset of the ancestor halos.

	radius_fieldstr

	Name of the field to be used to get the halo radius.

	factorfloat, optional

	Multiplicative factor of the halo radius in which
potential halos will be gathered. Default: 1.

	min_radiusYTQuantity or tuple of (value, unit)

	An absolute minimum radius for the sphere.

	my_idslist of ints

	List of ids of potential halos.

ytree.tree_farm.halo_selector.all_selector

	
ytree.tree_farm.halo_selector.all_selector(hc, ds2)

	Return all halos from the ancestor dataset.

	hchalo container object

	Halo container associated with the target halo.

	ds2halo catalog-type dataset

	The dataset of the ancestor halos.

	my_idslist of ints

	List of ids of potential halos.

ytree.arbor.arbor.Arbor

	
class ytree.arbor.arbor.Arbor(filename)

	Base class for all Arbor classes.

Loads a merger-tree output file or a series of halo catalogs
and create trees, stored in an array in
trees.
Arbors can be saved in a universal format with
save_arbor. Also, provide some
convenience functions for creating YTArrays and YTQuantities and
a cosmology calculator.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units)

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	save_arbor([filename, fields, trees, …])

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a YTArray using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	quan

	Create a YTQuantity using the Arbor’s unit registry.

	size

	Return length of tree list.

	trees

	Array containing all trees in the arbor.

	unit_registry

	Unit system registry.

ytree.arbor.arbor.CatalogArbor

	
class ytree.arbor.arbor.CatalogArbor(filename)

	Base class for Arbors created from a series of halo catalog
files where the descendent ID for each halo has been
pre-determined.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units)

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	save_arbor([filename, fields, trees, …])

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a YTArray using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	quan

	Create a YTQuantity using the Arbor’s unit registry.

	size

	Return length of tree list.

	trees

	Array containing all trees in the arbor.

	unit_registry

	Unit system registry.

ytree.arbor.fields.FieldInfoContainer

	
class ytree.arbor.fields.FieldInfoContainer(arbor)

	A container for information about fields.

	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	clear()

	

	copy()

	

	fromkeys

	Returns a new dict with keys from iterable and values equal to value.

	get(k[,d])

	

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache])

	Divide fields into those to be read and those to generate.

	setdefault(k[,d])

	

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	known_fields

	

ytree.arbor.fields.FieldContainer

	
class ytree.arbor.fields.FieldContainer(arbor)

	A container for field data.

	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	clear()

	

	copy()

	

	fromkeys

	Returns a new dict with keys from iterable and values equal to value.

	get(k[,d])

	

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	setdefault(k[,d])

	

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

ytree.arbor.fields.FakeFieldContainer

	
class ytree.arbor.fields.FakeFieldContainer(arbor, name=None)

	A fake field data container used to calculate dependencies.

	
__init__(arbor, name=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, name])

	Initialize self.

	clear()

	

	copy()

	

	fromkeys

	Returns a new dict with keys from iterable and values equal to value.

	get(k[,d])

	

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	setdefault(k[,d])

	

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	default_factory

	Factory for default value called by __missing__().

ytree.arbor.io.FieldIO

	
class ytree.arbor.io.FieldIO(arbor)

	Base class for FieldIO classes.

This object is resposible for field i/o for an Arbor.

	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

ytree.arbor.io.TreeFieldIO

	
class ytree.arbor.io.TreeFieldIO(arbor)

	IO class for getting fields for a tree.

	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

ytree.arbor.io.RootFieldIO

	
class ytree.arbor.io.RootFieldIO(arbor)

	IO class for getting fields for the roots of all trees.

	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

ytree.arbor.io.FallbackRootFieldIO

	
class ytree.arbor.io.FallbackRootFieldIO(arbor)

	Class for getting root fields from arbors that have no
specialized storage for root fields.

	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

ytree.arbor.io.DataFile

	
class ytree.arbor.io.DataFile(filename)

	Base class for data files.

This class allows us keep files open during i/o heavy operations
and to keep things like caches of fields.

	
__init__(filename)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename)

	Initialize self.

	close()

	

	open()

	

ytree.arbor.io.CatalogDataFile

	
class ytree.arbor.io.CatalogDataFile(filename, arbor)

	Base class for halo catalog files.

	
__init__(filename, arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename, arbor)

	Initialize self.

	close()

	

	open()

	

ytree.arbor.tree_node.TreeNode

	
class ytree.arbor.tree_node.TreeNode(uid, arbor=None, root=False)

	Class for objects stored in Arbors.

Each TreeNode represents a halo in a tree. A TreeNode knows
its halo ID, the level in the tree, and its global ID in the
Arbor that holds it. It also has a list of its ancestors.
Fields can be queried for it, its progenitor list, and the
tree beneath.

	
__init__(uid, arbor=None, root=False)

	Initialize a TreeNode with at least its halo catalog ID and
its level in the tree.

Methods

	__init__(uid[, arbor, root])

	Initialize a TreeNode with at least its halo catalog ID and its level in the tree.

	add_ancestor(ancestor)

	Add another TreeNode to the list of ancestors.

	clear_fields()

	If a root node, delete field data.

	pwalk()

	An iterator over all TreeNodes in the progenitor list, starting with this TreeNode.

	query(key)

	Return field values for this TreeNode, progenitor list, or tree.

	reset()

	Reset all data structures.

	save_tree([filename, fields])

	Save the tree to a file.

	twalk()

	An iterator over all TreeNodes in the tree beneath, starting with this TreeNode.

Attributes

	ancestors

	

	descids

	

	is_root

	

	nodes

	

	tree_size

	

	uids

	

ytree.arbor.tree_node_selector.TreeNodeSelector

	
class ytree.arbor.tree_node_selector.TreeNodeSelector(function, args=None, kwargs=None)

	The TreeNodeSelector is responsible for choosing which one of a
halo’s ancestors to return when querying the line of main
progenitors for a halo.

	ancestorslist of TreeNode objects

	List of TreeNode objects from which to select.

The function should return a single TreeNode.

>>> import ytree
>>> def max_value(ancestors, field):
... vals = np.array([a[field] for a in ancestors])
... return ancestors[np.argmax(vals)]
>>> ytree.add_tree_node_selector("max_field_value", max_value)
>>> a = ytree.load("tree_0_0_0.dat")
>>> a.set_selector("max_field_value", "mass")
>>> print (a[0]["prog"])

	
__init__(function, args=None, kwargs=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(function[, args, kwargs])

	Initialize self.

ytree.arbor.frontends.ahf.arbor.AHFArbor

	
class ytree.arbor.frontends.ahf.arbor.AHFArbor(filename, hubble_constant=1.0)

	Arbor for Amiga Halo Finder data.

	
__init__(filename, hubble_constant=1.0)

	Initialize an Arbor given an input file.

Methods

	__init__(filename[, hubble_constant])

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units)

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	save_arbor([filename, fields, trees, …])

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a YTArray using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	quan

	Create a YTQuantity using the Arbor’s unit registry.

	size

	Return length of tree list.

	trees

	Array containing all trees in the arbor.

	unit_registry

	Unit system registry.

ytree.arbor.frontends.ahf.fields.AHFFieldInfo

	
class ytree.arbor.frontends.ahf.fields.AHFFieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	clear()

	

	copy()

	

	fromkeys

	Returns a new dict with keys from iterable and values equal to value.

	get(k[,d])

	

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache])

	Divide fields into those to be read and those to generate.

	setdefault(k[,d])

	

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	known_fields

	

ytree.arbor.frontends.ahf.io.AHFDataFile

	
class ytree.arbor.frontends.ahf.io.AHFDataFile(filename, arbor)

	
	
__init__(filename, arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename, arbor)

	Initialize self.

	close()

	

	open()

	

Attributes

	links

	

ytree.arbor.frontends.arborarbor.arbor.ArborArbor

	
class ytree.arbor.frontends.arborarbor.arbor.ArborArbor(filename)

	Class for Arbors created with ytree version 1.1.0 or earlier.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units)

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	save_arbor([filename, fields, trees, …])

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a YTArray using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	quan

	Create a YTQuantity using the Arbor’s unit registry.

	size

	Return length of tree list.

	trees

	Array containing all trees in the arbor.

	unit_registry

	Unit system registry.

ytree.arbor.frontends.arborarbor.fields.ArborArborFieldInfo

	
class ytree.arbor.frontends.arborarbor.fields.ArborArborFieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	clear()

	

	copy()

	

	fromkeys

	Returns a new dict with keys from iterable and values equal to value.

	get(k[,d])

	

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache])

	Divide fields into those to be read and those to generate.

	setdefault(k[,d])

	

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	known_fields

	

ytree.arbor.frontends.arborarbor.io.ArborArborTreeFieldIO

	
class ytree.arbor.frontends.arborarbor.io.ArborArborTreeFieldIO(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

ytree.arbor.frontends.arborarbor.io.ArborArborRootFieldIO

	
class ytree.arbor.frontends.arborarbor.io.ArborArborRootFieldIO(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

ytree.arbor.frontends.consistent_trees.arbor.ConsistentTreesArbor

	
class ytree.arbor.frontends.consistent_trees.arbor.ConsistentTreesArbor(filename)

	Arbors from consistent-trees output files.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units)

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	save_arbor([filename, fields, trees, …])

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a YTArray using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	quan

	Create a YTQuantity using the Arbor’s unit registry.

	size

	Return length of tree list.

	trees

	Array containing all trees in the arbor.

	unit_registry

	Unit system registry.

ytree.arbor.frontends.consistent_trees.fields.ConsistentTreesFieldInfo

	
class ytree.arbor.frontends.consistent_trees.fields.ConsistentTreesFieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	clear()

	

	copy()

	

	fromkeys

	Returns a new dict with keys from iterable and values equal to value.

	get(k[,d])

	

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache])

	Divide fields into those to be read and those to generate.

	setdefault(k[,d])

	

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	known_fields

	

ytree.arbor.frontends.consistent_trees.io.ConsistentTreesDataFile

	
class ytree.arbor.frontends.consistent_trees.io.ConsistentTreesDataFile(filename)

	
	
__init__(filename)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename)

	Initialize self.

	close()

	

	open()

	

ytree.arbor.frontends.consistent_trees.io.ConsistentTreesTreeFieldIO

	
class ytree.arbor.frontends.consistent_trees.io.ConsistentTreesTreeFieldIO(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

ytree.arbor.frontends.lhalotree.arbor.LHaloTreeArbor

	
class ytree.arbor.frontends.lhalotree.arbor.LHaloTreeArbor(*args, **kwargs)

	Arbors for LHaloTree data.

	
__init__(*args, **kwargs)

	Added reader class to allow fast access of header info.

Methods

	__init__(*args, **kwargs)

	Added reader class to allow fast access of header info.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units)

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	save_arbor([filename, fields, trees, …])

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a YTArray using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	quan

	Create a YTQuantity using the Arbor’s unit registry.

	size

	Return length of tree list.

	trees

	Array containing all trees in the arbor.

	unit_registry

	Unit system registry.

ytree.arbor.frontends.lhalotree.fields.LHaloTreeFieldInfo

	
class ytree.arbor.frontends.lhalotree.fields.LHaloTreeFieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	clear()

	

	copy()

	

	fromkeys

	Returns a new dict with keys from iterable and values equal to value.

	get(k[,d])

	

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache])

	Divide fields into those to be read and those to generate.

	setdefault(k[,d])

	

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	known_fields

	

ytree.arbor.frontends.lhalotree.io.LHaloTreeTreeFieldIO

	
class ytree.arbor.frontends.lhalotree.io.LHaloTreeTreeFieldIO(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

ytree.arbor.frontends.lhalotree.io.LHaloTreeRootFieldIO

	
class ytree.arbor.frontends.lhalotree.io.LHaloTreeRootFieldIO(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

ytree.arbor.frontends.rockstar.arbor.RockstarArbor

	
class ytree.arbor.frontends.rockstar.arbor.RockstarArbor(filename)

	Class for Arbors created from Rockstar out_*.list files.
Use only descendent IDs to determine tree relationship.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units)

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	save_arbor([filename, fields, trees, …])

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a YTArray using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	quan

	Create a YTQuantity using the Arbor’s unit registry.

	size

	Return length of tree list.

	trees

	Array containing all trees in the arbor.

	unit_registry

	Unit system registry.

ytree.arbor.frontends.rockstar.fields.RockstarFieldInfo

	
class ytree.arbor.frontends.rockstar.fields.RockstarFieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	clear()

	

	copy()

	

	fromkeys

	Returns a new dict with keys from iterable and values equal to value.

	get(k[,d])

	

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache])

	Divide fields into those to be read and those to generate.

	setdefault(k[,d])

	

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	known_fields

	

ytree.arbor.frontends.rockstar.io.RockstarDataFile

	
class ytree.arbor.frontends.rockstar.io.RockstarDataFile(filename, arbor)

	
	
__init__(filename, arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename, arbor)

	Initialize self.

	close()

	

	open()

	

ytree.arbor.frontends.tree_farm.arbor.TreeFarmArbor

	
class ytree.arbor.frontends.tree_farm.arbor.TreeFarmArbor(filename)

	Class for Arbors created with TreeFarm.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units)

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	save_arbor([filename, fields, trees, …])

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a YTArray using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	quan

	Create a YTQuantity using the Arbor’s unit registry.

	size

	Return length of tree list.

	trees

	Array containing all trees in the arbor.

	unit_registry

	Unit system registry.

ytree.arbor.frontends.tree_farm.fields.TreeFarmFieldInfo

	
class ytree.arbor.frontends.tree_farm.fields.TreeFarmFieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	clear()

	

	copy()

	

	fromkeys

	Returns a new dict with keys from iterable and values equal to value.

	get(k[,d])

	

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache])

	Divide fields into those to be read and those to generate.

	setdefault(k[,d])

	

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	known_fields

	

ytree.arbor.frontends.tree_farm.io.TreeFarmDataFile

	
class ytree.arbor.frontends.tree_farm.io.TreeFarmDataFile(filename, arbor)

	
	
__init__(filename, arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename, arbor)

	Initialize self.

	close()

	

	open()

	

ytree.arbor.frontends.tree_farm.io.TreeFarmTreeFieldIO

	
class ytree.arbor.frontends.tree_farm.io.TreeFarmTreeFieldIO(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

ytree.arbor.frontends.ytree.arbor.YTreeArbor

	
class ytree.arbor.frontends.ytree.arbor.YTreeArbor(filename)

	Class for Arbors created from the
save_arbor
or save_tree functions.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units)

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	save_arbor([filename, fields, trees, …])

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a YTArray using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	quan

	Create a YTQuantity using the Arbor’s unit registry.

	size

	Return length of tree list.

	trees

	Array containing all trees in the arbor.

	unit_registry

	Unit system registry.

ytree.arbor.frontends.ytree.io.YTreeDataFile

	
class ytree.arbor.frontends.ytree.io.YTreeDataFile(filename)

	
	
__init__(filename)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename)

	Initialize self.

	close()

	

	open()

	

ytree.arbor.frontends.ytree.io.YTreeTreeFieldIO

	
class ytree.arbor.frontends.ytree.io.YTreeTreeFieldIO(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

ytree.arbor.frontends.ytree.io.YTreeRootFieldIO

	
class ytree.arbor.frontends.ytree.io.YTreeRootFieldIO(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

Index

 _
 | A
 | C
 | D
 | F
 | H
 | L
 | M
 | R
 | S
 | T
 | Y

_

 	
 	__init__() (ytree.arbor.arbor.Arbor method)

 	(ytree.arbor.arbor.CatalogArbor method)

 	(ytree.arbor.fields.FakeFieldContainer method)

 	(ytree.arbor.fields.FieldContainer method)

 	(ytree.arbor.fields.FieldInfoContainer method)

 	(ytree.arbor.frontends.ahf.arbor.AHFArbor method)

 	(ytree.arbor.frontends.ahf.fields.AHFFieldInfo method)

 	(ytree.arbor.frontends.ahf.io.AHFDataFile method)

 	(ytree.arbor.frontends.arborarbor.arbor.ArborArbor method)

 	(ytree.arbor.frontends.arborarbor.fields.ArborArborFieldInfo method)

 	(ytree.arbor.frontends.arborarbor.io.ArborArborRootFieldIO method)

 	(ytree.arbor.frontends.arborarbor.io.ArborArborTreeFieldIO method)

 	(ytree.arbor.frontends.consistent_trees.arbor.ConsistentTreesArbor method)

 	(ytree.arbor.frontends.consistent_trees.fields.ConsistentTreesFieldInfo method)

 	(ytree.arbor.frontends.consistent_trees.io.ConsistentTreesDataFile method)

 	(ytree.arbor.frontends.consistent_trees.io.ConsistentTreesTreeFieldIO method)

 	(ytree.arbor.frontends.lhalotree.arbor.LHaloTreeArbor method)

 	(ytree.arbor.frontends.lhalotree.fields.LHaloTreeFieldInfo method)

 	(ytree.arbor.frontends.lhalotree.io.LHaloTreeRootFieldIO method)

 	(ytree.arbor.frontends.lhalotree.io.LHaloTreeTreeFieldIO method)

 	(ytree.arbor.frontends.rockstar.arbor.RockstarArbor method)

 	(ytree.arbor.frontends.rockstar.fields.RockstarFieldInfo method)

 	(ytree.arbor.frontends.rockstar.io.RockstarDataFile method)

 	(ytree.arbor.frontends.tree_farm.arbor.TreeFarmArbor method)

 	(ytree.arbor.frontends.tree_farm.fields.TreeFarmFieldInfo method)

 	(ytree.arbor.frontends.tree_farm.io.TreeFarmDataFile method)

 	(ytree.arbor.frontends.tree_farm.io.TreeFarmTreeFieldIO method)

 	(ytree.arbor.frontends.ytree.arbor.YTreeArbor method)

 	(ytree.arbor.frontends.ytree.io.YTreeDataFile method)

 	(ytree.arbor.frontends.ytree.io.YTreeRootFieldIO method)

 	(ytree.arbor.frontends.ytree.io.YTreeTreeFieldIO method)

 	(ytree.arbor.io.CatalogDataFile method)

 	(ytree.arbor.io.DataFile method)

 	(ytree.arbor.io.FallbackRootFieldIO method)

 	(ytree.arbor.io.FieldIO method)

 	(ytree.arbor.io.RootFieldIO method)

 	(ytree.arbor.io.TreeFieldIO method)

 	(ytree.arbor.tree_node.TreeNode method)

 	(ytree.arbor.tree_node_selector.TreeNodeSelector method)

 	(ytree.tree_farm.ancestry_checker.AncestryChecker method)

 	(ytree.tree_farm.ancestry_filter.AncestryFilter method)

 	(ytree.tree_farm.ancestry_short.AncestryShort method)

 	(ytree.tree_farm.halo_selector.HaloSelector method)

 	(ytree.tree_farm.tree_farm.TreeFarm method)

A

 	
 	above_mass_fraction() (in module ytree.tree_farm.ancestry_short)

 	add_ancestry_checker() (in module ytree.tree_farm.ancestry_checker)

 	add_ancestry_filter() (in module ytree.tree_farm.ancestry_filter)

 	add_ancestry_short() (in module ytree.tree_farm.ancestry_short)

 	add_halo_selector() (in module ytree.tree_farm.halo_selector)

 	add_tree_node_selector() (in module ytree.arbor.tree_node_selector)

 	AHFArbor (class in ytree.arbor.frontends.ahf.arbor)

 	AHFDataFile (class in ytree.arbor.frontends.ahf.io)

 	AHFFieldInfo (class in ytree.arbor.frontends.ahf.fields)

 	
 	all_selector() (in module ytree.tree_farm.halo_selector)

 	AncestryChecker (class in ytree.tree_farm.ancestry_checker)

 	AncestryFilter (class in ytree.tree_farm.ancestry_filter)

 	AncestryShort (class in ytree.tree_farm.ancestry_short)

 	Arbor (class in ytree.arbor.arbor)

 	ArborArbor (class in ytree.arbor.frontends.arborarbor.arbor)

 	ArborArborFieldInfo (class in ytree.arbor.frontends.arborarbor.fields)

 	ArborArborRootFieldIO (class in ytree.arbor.frontends.arborarbor.io)

 	ArborArborTreeFieldIO (class in ytree.arbor.frontends.arborarbor.io)

C

 	
 	CatalogArbor (class in ytree.arbor.arbor)

 	CatalogDataFile (class in ytree.arbor.io)

 	common_ids() (in module ytree.tree_farm.ancestry_checker)

 	
 	ConsistentTreesArbor (class in ytree.arbor.frontends.consistent_trees.arbor)

 	ConsistentTreesDataFile (class in ytree.arbor.frontends.consistent_trees.io)

 	ConsistentTreesFieldInfo (class in ytree.arbor.frontends.consistent_trees.fields)

 	ConsistentTreesTreeFieldIO (class in ytree.arbor.frontends.consistent_trees.io)

D

 	
 	DataFile (class in ytree.arbor.io)

F

 	
 	FakeFieldContainer (class in ytree.arbor.fields)

 	FallbackRootFieldIO (class in ytree.arbor.io)

 	
 	FieldContainer (class in ytree.arbor.fields)

 	FieldInfoContainer (class in ytree.arbor.fields)

 	FieldIO (class in ytree.arbor.io)

H

 	
 	HaloSelector (class in ytree.tree_farm.halo_selector)

L

 	
 	LHaloTreeArbor (class in ytree.arbor.frontends.lhalotree.arbor)

 	LHaloTreeFieldInfo (class in ytree.arbor.frontends.lhalotree.fields)

 	
 	LHaloTreeRootFieldIO (class in ytree.arbor.frontends.lhalotree.io)

 	LHaloTreeTreeFieldIO (class in ytree.arbor.frontends.lhalotree.io)

 	load() (in module ytree.arbor.arbor)

M

 	
 	max_field_value() (in module ytree.arbor.tree_node_selector)

 	
 	min_field_value() (in module ytree.arbor.tree_node_selector)

 	most_massive() (in module ytree.tree_farm.ancestry_filter)

R

 	
 	RockstarArbor (class in ytree.arbor.frontends.rockstar.arbor)

 	RockstarDataFile (class in ytree.arbor.frontends.rockstar.io)

 	
 	RockstarFieldInfo (class in ytree.arbor.frontends.rockstar.fields)

 	RootFieldIO (class in ytree.arbor.io)

S

 	
 	save_arbor() (ytree.arbor.arbor.Arbor method)

 	save_tree() (ytree.arbor.tree_node.TreeNode method)

 	set_ancestry_checker() (ytree.tree_farm.tree_farm.TreeFarm method)

 	set_ancestry_filter() (ytree.tree_farm.tree_farm.TreeFarm method)

 	
 	set_ancestry_short() (ytree.tree_farm.tree_farm.TreeFarm method)

 	set_selector() (ytree.arbor.arbor.Arbor method)

 	(ytree.tree_farm.tree_farm.TreeFarm method)

 	sphere_selector() (in module ytree.tree_farm.halo_selector)

T

 	
 	trace_ancestors() (ytree.tree_farm.tree_farm.TreeFarm method)

 	trace_descendents() (ytree.tree_farm.tree_farm.TreeFarm method)

 	TreeFarm (class in ytree.tree_farm.tree_farm)

 	TreeFarmArbor (class in ytree.arbor.frontends.tree_farm.arbor)

 	TreeFarmDataFile (class in ytree.arbor.frontends.tree_farm.io)

 	
 	TreeFarmFieldInfo (class in ytree.arbor.frontends.tree_farm.fields)

 	TreeFarmTreeFieldIO (class in ytree.arbor.frontends.tree_farm.io)

 	TreeFieldIO (class in ytree.arbor.io)

 	TreeNode (class in ytree.arbor.tree_node)

 	TreeNodeSelector (class in ytree.arbor.tree_node_selector)

Y

 	
 	YTreeArbor (class in ytree.arbor.frontends.ytree.arbor)

 	YTreeDataFile (class in ytree.arbor.frontends.ytree.io)

 	
 	YTreeRootFieldIO (class in ytree.arbor.frontends.ytree.io)

 	YTreeTreeFieldIO (class in ytree.arbor.frontends.ytree.io)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to ytree.

 		
 Installation

 		
 What version do I have?

 		
 Sample Data

 		
 Working with Merger-Trees

 		
 Loading Merger-Tree Data

 		
 Loading Data

 		
 Working with Merger-Tree Data

 		
 How many trees are there?

 		
 Root Fields

 		
 Accessing Individual Trees

 		
 Accessing the Progenitor Lineage of a Tree

 		
 Customizing the Progenitor Line

 		
 Saving Arbors and Trees

 		
 An Important Note on Comoving and Proper Units

 		
 Fields in ytree

 		
 The Field Info Container

 		
 Fields on Disk

 		
 Alias Fields

 		
 Derived Fields

 		
 Analysis Fields

 		
 Making Merger-trees from Gadget FoF/Subfind

 		
 Computing a Full Merger-tree

 		
 Computing a Targeted Merger-tree

 		
 Optimizing Merger-tree Creation

 		
 Running in Parallel

 		
 Optimizing Halo Candidate Selection

 		
 Searching for Fewer Ancestors

 		
 Community Code of Conduct

 		
 Contributing to ytree

 		
 Developer Guide

 		
 Contributing in a Nutshell

 		
 Testing

 		
 Testing Data

 		
 Run the Tests

 		
 Adding Support for a New Format

 		
 Where do the files go?

 		
 Building Your Frontend

 		
 Two Types of Arbors

 		
 Field Units and Aliases (fields.py)

 		
 You made it!

 		
 Everyone Loves Samples

 		
 Help

 		
 Citing ytree

 		
 API Reference

 		
 Working with Merger-Trees

 		
 ytree.arbor.arbor.load

 		
 ytree.arbor.arbor.Arbor

 		
 ytree.arbor.arbor.Arbor.save_arbor

 		
 ytree.arbor.tree_node.TreeNode.save_tree

 		
 ytree.arbor.arbor.Arbor.set_selector

 		
 ytree.arbor.tree_node_selector.TreeNodeSelector

 		
 ytree.arbor.tree_node_selector.add_tree_node_selector

 		
 ytree.arbor.tree_node_selector.max_field_value

 		
 ytree.arbor.tree_node_selector.min_field_value

 		
 Making Merger-Trees

 		
 ytree.tree_farm.tree_farm.TreeFarm

 		
 ytree.tree_farm.tree_farm.TreeFarm.trace_ancestors

 		
 ytree.tree_farm.tree_farm.TreeFarm.trace_descendents

 		
 ytree.tree_farm.tree_farm.TreeFarm.set_selector

 		
 ytree.tree_farm.tree_farm.TreeFarm.set_ancestry_checker

 		
 ytree.tree_farm.tree_farm.TreeFarm.set_ancestry_filter

 		
 ytree.tree_farm.tree_farm.TreeFarm.set_ancestry_short

 		
 ytree.tree_farm.ancestry_checker.AncestryChecker

 		
 ytree.tree_farm.ancestry_checker.add_ancestry_checker

 		
 ytree.tree_farm.ancestry_checker.common_ids

 		
 ytree.tree_farm.ancestry_filter.AncestryFilter

 		
 ytree.tree_farm.ancestry_filter.add_ancestry_filter

 		
 ytree.tree_farm.ancestry_filter.most_massive

 		
 ytree.tree_farm.ancestry_short.AncestryShort

 		
 ytree.tree_farm.ancestry_short.add_ancestry_short

 		
 ytree.tree_farm.ancestry_short.above_mass_fraction

 		
 ytree.tree_farm.halo_selector.HaloSelector

 		
 ytree.tree_farm.halo_selector.add_halo_selector

 		
 ytree.tree_farm.halo_selector.sphere_selector

 		
 ytree.tree_farm.halo_selector.all_selector

 		
 Internal Classes

 		
 ytree.arbor.arbor.Arbor

 		
 ytree.arbor.arbor.CatalogArbor

 		
 ytree.arbor.fields.FieldInfoContainer

 		
 ytree.arbor.fields.FieldContainer

 		
 ytree.arbor.fields.FakeFieldContainer

 		
 ytree.arbor.io.FieldIO

 		
 ytree.arbor.io.TreeFieldIO

 		
 ytree.arbor.io.RootFieldIO

 		
 ytree.arbor.io.FallbackRootFieldIO

 		
 ytree.arbor.io.DataFile

 		
 ytree.arbor.io.CatalogDataFile

 		
 ytree.arbor.tree_node.TreeNode

 		
 ytree.arbor.tree_node_selector.TreeNodeSelector

 		
 ytree.arbor.frontends.ahf.arbor.AHFArbor

 		
 ytree.arbor.frontends.ahf.fields.AHFFieldInfo

 		
 ytree.arbor.frontends.ahf.io.AHFDataFile

 		
 ytree.arbor.frontends.arborarbor.arbor.ArborArbor

 		
 ytree.arbor.frontends.arborarbor.fields.ArborArborFieldInfo

 		
 ytree.arbor.frontends.arborarbor.io.ArborArborTreeFieldIO

 		
 ytree.arbor.frontends.arborarbor.io.ArborArborRootFieldIO

 		
 ytree.arbor.frontends.consistent_trees.arbor.ConsistentTreesArbor

 		
 ytree.arbor.frontends.consistent_trees.fields.ConsistentTreesFieldInfo

 		
 ytree.arbor.frontends.consistent_trees.io.ConsistentTreesDataFile

 		
 ytree.arbor.frontends.consistent_trees.io.ConsistentTreesTreeFieldIO

 		
 ytree.arbor.frontends.lhalotree.arbor.LHaloTreeArbor

 		
 ytree.arbor.frontends.lhalotree.fields.LHaloTreeFieldInfo

 		
 ytree.arbor.frontends.lhalotree.io.LHaloTreeTreeFieldIO

 		
 ytree.arbor.frontends.lhalotree.io.LHaloTreeRootFieldIO

 		
 ytree.arbor.frontends.rockstar.arbor.RockstarArbor

 		
 ytree.arbor.frontends.rockstar.fields.RockstarFieldInfo

 		
 ytree.arbor.frontends.rockstar.io.RockstarDataFile

 		
 ytree.arbor.frontends.tree_farm.arbor.TreeFarmArbor

 		
 ytree.arbor.frontends.tree_farm.fields.TreeFarmFieldInfo

 		
 ytree.arbor.frontends.tree_farm.io.TreeFarmDataFile

 		
 ytree.arbor.frontends.tree_farm.io.TreeFarmTreeFieldIO

 		
 ytree.arbor.frontends.ytree.arbor.YTreeArbor

 		
 ytree.arbor.frontends.ytree.io.YTreeDataFile

 		
 ytree.arbor.frontends.ytree.io.YTreeTreeFieldIO

 		
 ytree.arbor.frontends.ytree.io.YTreeRootFieldIO

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

