
ytree Documentation
Release 1.0

Britton Smith

November 02, 2016

Contents

1 Installation 3

2 Using ytree 5
2.1 Loading, Using, and Saving Merger-trees . 5
2.2 Making Merger-trees from Gadget FoF/Subfind . 7

3 Help 11

4 Citing ytree 13

5 Search 15

i

ii

ytree Documentation, Release 1.0

ytree is a merger-tree code based on the yt analysis toolkit. ytree can create merger-trees from Gadget FoF/Subfind
catalogs, either for all halos or for a specific set of halos. ytree is able to load in merger-tree from the following
formats:

• consistent-trees

• Rockstar halo catalogs without consistent-trees

• merger-trees made with ytree

All formats can be saved with a universal format that can be reloaded with ytree. Individual trees for single halos can
also be saved. Similar to yt, fields queried for halos or trees are returned with units.

Contents 1

http://yt-project.org/
https://bitbucket.org/pbehroozi/consistent-trees
https://bitbucket.org/gfcstanford/rockstar

ytree Documentation, Release 1.0

2 Contents

CHAPTER 1

Installation

ytree’s main dependency is yt. Once you have installed yt following the instructions here, ytree can be installed using
pip.

pip install ytree

And that’s it!

3

http://yt-project.org/
http://yt-project.org/#getyt

ytree Documentation, Release 1.0

4 Chapter 1. Installation

CHAPTER 2

Using ytree

2.1 Loading, Using, and Saving Merger-trees

The Arbor class is responsible for loading and providing access to merger-tree data. Below, we discuss how to load
in data and what one can do with it.

2.1.1 Loading Merger-tree data

ytree can load merger-tree data from multiple sources using the ~ytree.arbor.load command. This command will
guess the correct format and read in the data appropriately. For examples of loading each format, see below.

Consistent Trees

The consistent-trees format is typically one or a few files with a naming convention like “tree_0_0_0.dat”. To load
these files, just give the filename

import ytree
a = ytree.load("tree_0_0_0.dat")

Rockstar Catalogs

Rockstar catalogs with the naming convention “out_*.list” will contain information on the descendent ID of each halo
and can be loaded independently of consistent-trees. This can be useful when your simulation has very few halos, such
as in a zoom-in simulation. To load in this format, simply provide the path to one of these files.

import ytree
a = ytree.load("rockstar_halos/out_0.list")

TreeFarm

Merger-trees created with the TreeFarm method can be loaded in by providing the path to one of the catalogs created
during the calculation.

import ytree
a = ytree.load("all_halos/fof_subhalo_tab_016.0.hdf5.0.h5")

5

https://bitbucket.org/pbehroozi/consistent-trees

ytree Documentation, Release 1.0

Arbor

Once merger-tree data has been loaded, it can be saved to a universal format. This can be loaded by providing the file
created.

import ytree
a = ytree.load("arbor.h5")

2.1.2 Working with Merger-trees

Once merger-tree data has been loaded into an Arbor, the individual trees will be stored in a list in the trees
attribute.

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
yt : [INFO] 2016-09-26 15:35:57,279 Loading tree data from tree_0_0_0.dat.
Loading trees: 100%|| 327/327 [00:00<00:00, 4602.07it/s]
yt : [INFO] 2016-09-26 15:35:57,666 Arbor contains 327 trees with 10405 total nodes.
>>> print (len(a.trees))
327
>>> print (a.trees[0])
TreeNode[0,0]

A TreeNode is one halo in a merger-tree. The numbers correspond to the halo ID and the level in the tree. Like with
yt data containers, fields can be queried in dictionary fashion.

>>> my_tree = a.trees[0]
>>> print (my_tree["mvir"])
1.147e+13 Msun/h
>>> print (my_tree["redshift"])
0.0
>>> print (my_tree["position"])
[69.95449 60.33949 50.64586] Mpc/h
>>> print (my_tree["velocity"])
[-789.51 1089.31 1089.31] km/s

A halo’s ancestors are stored as a list in the ancestors attribute.

>>> print my_tree.ancestors
[TreeNode[1,0]]

Iterating over a Tree

The twalk function provides an iterator that allows you to loop over all halos in the tree. This will iterate over all
ancestors in a recursive fashion.

>>> for my_node in my_tree.twalk():
... print (my_node)

Accessing the Trunk of the Tree

The line function allows one to query fields for the main trunk of the tree. By default, the “main trunk” follows the
most massive progenitor.

6 Chapter 2. Using ytree

ytree Documentation, Release 1.0

>>> print my_tree.line("mvir")
[1.14700000e+13 1.20700000e+13 1.23700000e+13 1.23700000e+13, ...,

6.64000000e+12 5.13100000e+12 3.32000000e+12 1.20700000e+12
2.71600000e+12] Msun/h

The selection method used by the line function can be changed by calling the set_selector
function on the Arbor. For information on creating new selection methods, see the example,
~tree.tree_node_selector.max_field_value.

>>> a.set_selector("min_field_value", "mvir")

Similar to twalk, the lwalk function provide an iterator over the trunk of a tree.

>>> for my_node in my_tree.lwalk():
... print (my_node)

Similar to the line function, the tree function provides field access to the whole tree. However, since this is for all
ancestors, note that these are not necessarily in chronological order.

>>> print my_tree.tree("mvir")

2.1.3 Saving Arbors and Trees

Arbors of any type can be saved to a universal file format which can be reloaded in the same way.

>>> a.save_arbor("my_arbor.h5")
yt : [INFO] 2016-09-26 16:45:40,064 Saving field data to yt dataset: my_arbor.h5.
>>> a2 = ytree.load("my_arbor.h5")
Loading trees: 100%|| 327/327 [00:00<00:00, 1086.22it/s]
yt : [INFO] 2016-09-26 16:46:26,383 Arbor contains 327 trees with 10405 total nodes.

Individual trees can be saved and reloaded in the same manner.

>>> fn = my_tree.save_tree()
yt : [INFO] 2016-09-26 16:47:09,931 Saving field data to yt dataset: tree_0_0.h5.
>>> atree = ytree.load(fn)
Loading trees: 100%|| 1/1 [00:00<00:00, 669.38it/s]
yt : [INFO] 2016-09-26 16:47:32,441 Arbor contains 1 trees with 45 total nodes.

2.2 Making Merger-trees from Gadget FoF/Subfind

The ytree TreeFarm can compute merger-trees either for all halos, starting at the beginning of the simulation, or for
specific halos, starting at the final output and moving backward. These two use-cases are covered separately. Halo
catalogs must be in the form created by the Gadget FoF halo finder or Subfind substructure finder.

2.2.1 Computing a Full Merger-tree

TreeFarm accepts a yt time-series object over which the merger-tree will be computed.

import yt
import ytree

ts = yt.DatasetSeries("data/groups_*/*.0.hdf5")

2.2. Making Merger-trees from Gadget FoF/Subfind 7

ytree Documentation, Release 1.0

my_tree = TreeFarm(ts)
my_tree.trace_descendents("Group", filename="all_halos/")

The first argument to trace_descendents specifies the type of halo object to use. This will typically be either
“Group” for FoF groups or Subhalo for Subfind groups. This process will create a new halo catalogs with the additional
field representing the descendent ID for each halo. These can be loaded using yt like any other catalogs. Once
complete, the final merger-tree can be loaded into a TreeFarm Arbor.

2.2.2 Computing a Targeted Merger-tree

Computing a full merger-tree can be extremely expensive when the simulation is large. Instead, merger-trees can
be created for specific halos in the final dataset, then working backward. Below is an example of computing the
merger-tree for only the most massive halo.

import yt
import ytree

ds = yt.load("data/groups_025/fof_subhalo_tab_025.0.hdf5")
i_max = np.argmax(ds.r["Group", "particle_mass"])
my_id = ds.r["particle_identifier"][i_max]

ts = yt.DatasetSeries("data/groups_*/*.0.hdf5")
my_tree = TreeFarm(ts)
my_tree.trace_ancestors("Group", my_id, filename="my_halo/")

Just as above, the resulting catalogs can then be loaded into a TreeFarm Arbor.

2.2.3 Optimizing Merger-tree Creation

Computing merger-trees can often be an expensive task. Below are some tips for speeding up the process.

Running in Parallel

ytree uses the parallel capabilities of yt to divide up the halo ancestor/descendent search over multiple processors.
In order to do this, yt must be set up to run in parallel. See here for instructions. Once this is done, a call to
yt.enable_parallelism() must be added to your script.

import yt
yt.enable_parallelism()
import ytree

ts = yt.DatasetSeries("data/groups_*/*.0.hdf5")
my_tree = TreeFarm(ts)
my_tree.trace_descendents("Group", filename="all_halos/")

That script must then be run with mpirun.

mpirun -np 4 python my_script.py

Optimizing Halo Candidate Selection

Halo ancestors and descendents are typically found by comparing particle IDs between two halos. The method of
selecting which halos should be compared can greatly affect performance. By default, TreeFarm will compare a

8 Chapter 2. Using ytree

http://yt-project.org/doc/analyzing/parallel_computation.html#setting-up-parallel-yt

ytree Documentation, Release 1.0

halo against all halos in the next dataset. This is both the most robust and slowest method of matching ancestors and
descendents. A smarter method is to select candidate matches from only a region around the target halo. For example,
TreeFarm can be configured to select halos from a sphere centered on the current halo.

my_tree = TreeFarm(ts)
my_tree.set_selector("sphere", "virial_radius", factor=5)
my_tree.trace_descendents("Group", filename="all_halos/")

In the above example, candidate halos will be selected from a sphere that is five times the value of the “virial_radius”
field. While this will speed up the calculation, a match will not be found if the ancestor/descendent is outside of this
region. Some experimentation is recommended to find the optimal balance between speed and robustness.

Currently, the “sphere” selector is the only other selection method implemented, although others can be created easily.
For an example, see ~ytree.halo_selector.sphere_selector.

Searching for Fewer Ancestors

When computing a merger-tree for specific halos (Computing a Targeted Merger-tree), you only be interested in the
most massive or the few most massive progenitors. If this is the case, TreeFarm can be configured to end the ancestor
search when these have been found, rather than searching for all possible progenitors.

The set_ancestry_filter function places a filter on which ancestors of any given halo will be returned
and followed in successive rounds of the merger-tree process. The “most_massive” filter instructs the TreeFarm
to only keep the most massive ancestor. This will greatly reduce the number of halos included in the merger-
tree and, therefore, speed up the calculation considerably. For an example of how to create a new filter, see
~ytree.ancestry_filter.most_massive.

The filtering will only occur after all candidates have been checked for ancestry. An additional operation an be added
to end the ancestry search after certain criteria have been met. In the call to set_ancestry_short below, the
ancestry search will end as soon as an ancestor with at least 50% of the mass of the target halo has been found. For an
example of how to create a new function of this type, see ~ytree.ancestry_short.most_massive.

ts = yt.DatasetSeries("data/groups_*/*.0.hdf5")
my_tree = TreeFarm(ts)
my_tree.trace_ancestors("Group", my_id, filename="my_halo/")
my_tree.set_ancestry_filter("most_massive")
my_tree.set_ancestry_short("above_mass_fraction", 0.5)

2.2. Making Merger-trees from Gadget FoF/Subfind 9

ytree Documentation, Release 1.0

10 Chapter 2. Using ytree

CHAPTER 3

Help

Since ytree is heavily based on yt, the best way to get help is by joining the yt users list. Feel free to post any questions
or ideas for development.

11

http://yt-project.org/
http://lists.spacepope.org/listinfo.cgi/yt-users-spacepope.org

ytree Documentation, Release 1.0

12 Chapter 3. Help

CHAPTER 4

Citing ytree

If you use ytree in your work, please cite it as “ytree, written by Britton smith” with a footnote pointing to
http://ytree.readthedocs.io.

13

http://ytree.readthedocs.io

ytree Documentation, Release 1.0

14 Chapter 4. Citing ytree

CHAPTER 5

Search

• search

15

	Installation
	Using ytree
	Loading, Using, and Saving Merger-trees
	Making Merger-trees from Gadget FoF/Subfind

	Help
	Citing ytree
	Search

