

 Navigation

 	
 index

 	
 next |

 	ytree 1.0 documentation

Welcome to ytree’s documentation!

ytree is a merger-tree code based on the yt [http://yt-project.org/]
analysis toolkit. ytree can create merger-trees from Gadget FoF/Subfind
catalogs, either for all halos or for a specific set of halos. ytree is
able to load in merger-tree from the following formats:

	consistent-trees [https://bitbucket.org/pbehroozi/consistent-trees]

	Rockstar [https://bitbucket.org/gfcstanford/rockstar] halo catalogs
without consistent-trees

	merger-trees made with ytree

All formats can be saved with a universal format that can be reloaded
with ytree. Individual trees for single halos can also be saved. Similar
to yt, fields queried for halos or trees are returned with units.

Installation

ytree’s main dependency is yt [http://yt-project.org/]. Once you
have installed yt following the instructions here [http://yt-project.org/#getyt], ytree can be installed using pip.

pip install ytree

And that’s it!

Using ytree

	Loading, Using, and Saving Merger-trees
	Loading Merger-tree data

	Working with Merger-trees

	Saving Arbors and Trees

	Making Merger-trees from Gadget FoF/Subfind
	Computing a Full Merger-tree

	Computing a Targeted Merger-tree

	Optimizing Merger-tree Creation

Help

Since ytree is heavily based on yt [http://yt-project.org/], the best
way to get help is by joining the yt users list [http://lists.spacepope.org/listinfo.cgi/yt-users-spacepope.org]. Feel
free to post any questions or ideas for development.

Citing ytree

If you use ytree in your work, please cite it as “ytree, written by
Britton smith” with a footnote pointing to http://ytree.readthedocs.io.

Search

	Search Page

 Copyright 2016, Britton Smith.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ytree 1.0 documentation

Loading, Using, and Saving Merger-trees

The Arbor class is responsible for loading and providing access
to merger-tree data. Below, we discuss how to load in data and what
one can do with it.

Loading Merger-tree data

ytree can load merger-tree data from multiple sources using
the ~ytree.arbor.load command. This command will guess the correct
format and read in the data appropriately. For examples of loading
each format, see below.

Consistent Trees

The consistent-trees [https://bitbucket.org/pbehroozi/consistent-trees]
format is typically one or a few files with a naming convention like
“tree_0_0_0.dat”. To load these files, just give the filename

import ytree
a = ytree.load("tree_0_0_0.dat")

Rockstar Catalogs

Rockstar catalogs with the naming convention “out_*.list” will contain
information on the descendent ID of each halo and can be loaded
independently of consistent-trees. This can be useful when your
simulation has very few halos, such as in a zoom-in simulation. To
load in this format, simply provide the path to one of these files.

import ytree
a = ytree.load("rockstar_halos/out_0.list")

TreeFarm

Merger-trees created with the TreeFarm method can
be loaded in by providing the path to one of the catalogs created
during the calculation.

import ytree
a = ytree.load("all_halos/fof_subhalo_tab_016.0.hdf5.0.h5")

Arbor

Once merger-tree data has been loaded, it can be saved to a
universal format. This can be loaded by providing the file created.

import ytree
a = ytree.load("arbor.h5")

Working with Merger-trees

Once merger-tree data has been loaded into an Arbor, the individual
trees will be stored in a list in the trees attribute.

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
yt : [INFO] 2016-09-26 15:35:57,279 Loading tree data from tree_0_0_0.dat.
Loading trees: 100%|████████████████████████| 327/327 [00:00<00:00, 4602.07it/s]
yt : [INFO] 2016-09-26 15:35:57,666 Arbor contains 327 trees with 10405 total nodes.
>>> print (len(a.trees))
327
>>> print (a.trees[0])
TreeNode[0,0]

A TreeNode is one halo in a merger-tree. The numbers correspond to the
halo ID and the level in the tree. Like with yt data containers, fields
can be queried in dictionary fashion.

>>> my_tree = a.trees[0]
>>> print (my_tree["mvir"])
1.147e+13 Msun/h
>>> print (my_tree["redshift"])
0.0
>>> print (my_tree["position"])
[69.95449 60.33949 50.64586] Mpc/h
>>> print (my_tree["velocity"])
[-789.51 1089.31 1089.31] km/s

A halo’s ancestors are stored as a list in the ancestors attribute.

>>> print my_tree.ancestors
[TreeNode[1,0]]

Iterating over a Tree

The twalk function provides an iterator that allows you to loop over
all halos in the tree. This will iterate over all ancestors in a recursive
fashion.

>>> for my_node in my_tree.twalk():
... print (my_node)

Accessing the Trunk of the Tree

The line function allows one to query fields for the main trunk of the
tree. By default, the “main trunk” follows the most massive progenitor.

>>> print my_tree.line("mvir")
[1.14700000e+13 1.20700000e+13 1.23700000e+13 1.23700000e+13, ...,
 6.64000000e+12 5.13100000e+12 3.32000000e+12 1.20700000e+12
 2.71600000e+12] Msun/h

The selection method used by the line function can be changed by calling
the set_selector function on the Arbor. For information on creating
new selection methods, see the example,
~tree.tree_node_selector.max_field_value.

>>> a.set_selector("min_field_value", "mvir")

Similar to twalk, the lwalk function provide an iterator over the
trunk of a tree.

>>> for my_node in my_tree.lwalk():
... print (my_node)

Similar to the line function, the tree function provides field
access to the whole tree. However, since this is for all ancestors,
note that these are not necessarily in chronological order.

>>> print my_tree.tree("mvir")

Saving Arbors and Trees

Arbors of any type can be saved to a universal file format which
can be reloaded in the same way.

>>> a.save_arbor("my_arbor.h5")
yt : [INFO] 2016-09-26 16:45:40,064 Saving field data to yt dataset: my_arbor.h5.
>>> a2 = ytree.load("my_arbor.h5")
Loading trees: 100%|████████████████████████| 327/327 [00:00<00:00, 1086.22it/s]
yt : [INFO] 2016-09-26 16:46:26,383 Arbor contains 327 trees with 10405 total nodes.

Individual trees can be saved and reloaded in the same manner.

>>> fn = my_tree.save_tree()
yt : [INFO] 2016-09-26 16:47:09,931 Saving field data to yt dataset: tree_0_0.h5.
>>> atree = ytree.load(fn)
Loading trees: 100%|█████████████████████████████| 1/1 [00:00<00:00, 669.38it/s]
yt : [INFO] 2016-09-26 16:47:32,441 Arbor contains 1 trees with 45 total nodes.

 Copyright 2016, Britton Smith.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	ytree 1.0 documentation

Making Merger-trees from Gadget FoF/Subfind

The ytree TreeFarm can compute merger-trees either for all halos,
starting at the beginning of the simulation, or for specific halos,
starting at the final output and moving backward. These two
use-cases are covered separately. Halo catalogs must be in the form
created by the Gadget FoF halo finder or Subfind substructure
finder.

Computing a Full Merger-tree

TreeFarm accepts a yt time-series object over which the
merger-tree will be computed.

import yt
import ytree

ts = yt.DatasetSeries("data/groups_*/*.0.hdf5")
my_tree = TreeFarm(ts)
my_tree.trace_descendents("Group", filename="all_halos/")

The first argument to trace_descendents specifies the type
of halo object to use. This will typically be either “Group” for
FoF groups or Subhalo for Subfind groups.
This process will create a new halo catalogs with the additional
field representing the descendent ID for each halo. These can
be loaded using yt like any other catalogs. Once complete,
the final merger-tree can be loaded into a
TreeFarm Arbor.

Computing a Targeted Merger-tree

Computing a full merger-tree can be extremely expensive when
the simulation is large. Instead, merger-trees can be created
for specific halos in the final dataset, then working backward.
Below is an example of computing the merger-tree for only the
most massive halo.

import yt
import ytree

ds = yt.load("data/groups_025/fof_subhalo_tab_025.0.hdf5")
i_max = np.argmax(ds.r["Group", "particle_mass"])
my_id = ds.r["particle_identifier"][i_max]

ts = yt.DatasetSeries("data/groups_*/*.0.hdf5")
my_tree = TreeFarm(ts)
my_tree.trace_ancestors("Group", my_id, filename="my_halo/")

Just as above, the resulting catalogs can then be loaded into
a TreeFarm Arbor.

Optimizing Merger-tree Creation

Computing merger-trees can often be an expensive task. Below
are some tips for speeding up the process.

Running in Parallel

ytree uses the parallel capabilities of yt to divide up the
halo ancestor/descendent search over multiple processors.
In order to do this, yt must be set up to run in parallel.
See here [http://yt-project.org/doc/analyzing/parallel_computation.html#setting-up-parallel-yt]
for instructions. Once this is done, a call to
yt.enable_parallelism() must be added to your script.

import yt
yt.enable_parallelism()
import ytree

ts = yt.DatasetSeries("data/groups_*/*.0.hdf5")
my_tree = TreeFarm(ts)
my_tree.trace_descendents("Group", filename="all_halos/")

That script must then be run with mpirun.

mpirun -np 4 python my_script.py

Optimizing Halo Candidate Selection

Halo ancestors and descendents are typically found by comparing
particle IDs between two halos. The method of selecting which
halos should be compared can greatly affect performance. By
default, TreeFarm will compare a halo against all halos
in the next dataset. This is both the most robust and slowest
method of matching ancestors and descendents. A smarter
method is to select candidate matches from only a region
around the target halo. For example, TreeFarm can be
configured to select halos from a sphere centered on the
current halo.

my_tree = TreeFarm(ts)
my_tree.set_selector("sphere", "virial_radius", factor=5)
my_tree.trace_descendents("Group", filename="all_halos/")

In the above example, candidate halos will be selected from a
sphere that is five times the value of the “virial_radius” field.
While this will speed up the calculation, a match will not be
found if the ancestor/descendent is outside of this region.
Some experimentation is recommended to find the optimal balance
between speed and robustness.

Currently, the “sphere” selector is the only other selection
method implemented, although others can be created easily.
For an example, see ~ytree.halo_selector.sphere_selector.

Searching for Fewer Ancestors

When computing a merger-tree for specific halos
(Computing a Targeted Merger-tree), you only be interested in the most
massive or the few most massive progenitors. If this is the
case, TreeFarm can be configured to end the ancestor
search when these have been found, rather than searching for
all possible progenitors.

The set_ancestry_filter function places a filter on which
ancestors of any given halo will be returned and followed in
successive rounds of the merger-tree process. The
“most_massive” filter instructs the TreeFarm to only
keep the most massive ancestor. This will greatly reduce
the number of halos included in the merger-tree and,
therefore, speed up the calculation considerably. For an
example of how to create a new filter, see
~ytree.ancestry_filter.most_massive.

The filtering will only occur after all candidates have been
checked for ancestry. An additional operation an be added to
end the ancestry search after certain criteria have been met.
In the call to set_ancestry_short below, the ancestry
search will end as soon as an ancestor with at least 50% of
the mass of the target halo has been found. For an example
of how to create a new function of this type, see
~ytree.ancestry_short.most_massive.

ts = yt.DatasetSeries("data/groups_*/*.0.hdf5")
my_tree = TreeFarm(ts)
my_tree.trace_ancestors("Group", my_id, filename="my_halo/")
my_tree.set_ancestry_filter("most_massive")
my_tree.set_ancestry_short("above_mass_fraction", 0.5)

 Copyright 2016, Britton Smith.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	ytree 1.0 documentation

Index

 Copyright 2016, Britton Smith.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		ytree 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Britton Smith.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

