

Welcome to ytree.

ytree is a tool for working with merger tree data from multiple
sources. ytree is an extension of the yt [https://yt-project.org/] analysis toolkit and provides a similar
interface for merger tree data that includes universal field names,
derived fields, symbolic units, parallel functionality, and a
framework for performing complex analysis. ytree is able to load
in merger tree from the following formats:

	Amiga Halo Finder

	Consistent-Trees

	Consistent-Trees-HDF5

	LHaloTree

	LHaloTree-HDF5

	MORIA

	Rockstar Catalogs

	TreeFarm

	TreeFrog

See Loading Data for instructions specific to each format.
All formats can be resaved with a universal format that
can be reloaded with ytree. Individual trees for single
halos can also be saved.

I want to make merger trees!

If you have halo catalog data that can be loaded by
yt [https://yt-project.org/], then you can use the
treefarm [https://treefarm.readthedocs.io/] package to create
merger trees. treefarm [https://treefarm.readthedocs.io/] was
once a part of ytree, but is now its own thing.

Table of Contents

	Installation

	What version do I have?

	Sample Data

	An Important Note on Comoving and Proper Units

	Working with Merger Trees
	Loading Data

	Getting Started with Merger Trees

	Saving Arbors and Trees

	Searching Through Merger Trees (Accessing Like a Database)

	Halos and Fields from yt Data Containers

	Fields in ytree
	The Field Info Container

	Fields on Disk

	Alias Fields

	Derived Fields

	Vector Fields

	Analysis Fields

	Plotting Merger Trees
	Additional Dependencies

	Making Tree Plots

	Parallel Computing with ytree
	Enabling Parallelism and Running in Parallel

	Parallel Iterators

	Analyzing Merger Trees
	The AnalysisPipeline

	Putting it all Together: Parallel Analysis

	Example Applications
	Halo Age (a50)

	Significance

	Community Code of Conduct

	Contributing to ytree

	Developer Guide
	Contributing in a Nutshell

	Testing

	Adding Support for a New Format

	Help

	Citing ytree

	Reference
	API Reference

	ChangeLog

Citing ytree

If you use ytree in your work, please cite the following:

Smith et al., (2019). ytree: A Python package for analyzing merger
trees. Journal of Open Source Software, 4(44), 1881,
https://doi.org/10.21105/joss.01881

For BibTeX users:

@article{ytree,
 doi = {10.21105/joss.01881},
 url = {https://doi.org/10.21105/joss.01881},
 year = {2019},
 month = {dec},
 publisher = {The Open Journal},
 volume = {4},
 number = {44},
 pages = {1881},
 author = {Britton D. Smith and Meagan Lang},
 title = {ytree: A Python package for analyzing merger trees},
 journal = {Journal of Open Source Software}
}

If you would like to also cite the specific version of ytree used in
your work, include the following reference:

@software{britton_smith_2022_5959655,
 author = {Britton Smith and
 Meagan Lang and
 Juanjo Bazán},
 title = {ytree-project/ytree: ytree 3.1.1 Release},
 month = feb,
 year = 2022,
 publisher = {Zenodo},
 version = {ytree-3.1.1},
 doi = {10.5281/zenodo.5959655},
 url = {https://doi.org/10.5281/zenodo.5959655}
}

Search

	Search Page

Installation

ytree’s main dependency is yt [http://yt-project.org/]. Once you
have installed yt following the instructions here [http://yt-project.org/#getyt], ytree can be installed using pip.

$ pip install ytree

If you’d like to install the development version, the repository can
be found at https://github.com/ytree-project/ytree. This can be
installed by doing:

$ git clone https://github.com/ytree-project/ytree
$ cd ytree
$ pip install -e .

What version do I have?

To see what version of ytree you are using, do the following:

>>> import ytree
>>> print (ytree.__version__)

Sample Data

Sample datasets for every supported data format are available for download
from the yt Hub [https://girder.hub.yt/] in the
ytree data [https://girder.hub.yt/#collection/59835a1ee2a67400016a2cda]
collection. The entire collection (about 979 MB) can be downloaded
via the yt Hub’s web interface by clicking on “Actions” drop-down menu on
the far right and selecting “Download collection.” Individual datasets can
also be downloaded from this interface. Finally, the entire collection can
be downloaded through the girder-client interface:

$ pip install girder-client
$ girder-cli --api-url https://girder.hub.yt/api/v1 download 59835a1ee2a67400016a2cda ytree_data

An Important Note on Comoving and Proper Units

Users of yt are likely familiar with conversion from proper to comoving
reference frames by adding “cm” to a unit. For example, proper “Mpc”
becomes comoving with “Mpccm”. This conversion relies on all the data
being associated with a single redshift. This is not possible here
because the dataset has values for multiple redshifts. To account for
this, the proper and comoving unit systems are set to be equal to each
other.

>>> print (a.box_size)
100.0 Mpc/h
>>> print (a.box_size.to("Mpccm/h"))
100.0 Mpccm/h

Data should be assumed to be in the reference frame in which it
was saved. For length scales, this is typically the comoving frame.
When in doubt, the safest unit to use for lengths is “unitary”, which
a system normalized to the box size.

>>> print (a.box_size.to("unitary"))
1.0 unitary

Working with Merger Trees

The Arbor class is responsible for loading
and providing access to merger tree data. In this document, a loaded merger tree
dataset is referred to as an arbor. ytree provides several different
ways to navigate, query, and analyze merger trees. It is recommended that you
read this entire section to identify the way that is best for what you want to do.

Loading Data

ytree can load merger tree data from multiple sources using
the load command.

>>> import ytree
>>> a = ytree.load("consistent_trees/tree_0_0_0.dat")

This command will determine the correct format and read in the data
accordingly. For examples of loading each format, see below.

	Loading Data
	Amiga Halo Finder

	Consistent-Trees

	Consistent-Trees-HDF5

	LHaloTree

	LHaloTree-HDF5

	MORIA

	Rockstar Catalogs

	TreeFarm

	TreeFrog

	Saved Arbors (ytree format)

Getting Started with Merger Trees

Very little happens immediately after a dataset has been loaded. All tree
construction and data access occurs only on demand. After loading,
information such as the simulation box size, cosmological parameters, and
the available fields can be accessed.

>>> print (a.box_size)
100.0 Mpc/h
>>> print (a.hubble_constant, a.omega_matter, a.omega_lambda)
0.695 0.285 0.715
>>> print (a.field_list)
['scale', 'id', 'desc_scale', 'desc_id', 'num_prog', ...]

Similar to yt [http://yt-project.org/docs/dev/analyzing/fields.html],
ytree supports accessing fields by their native names as well as generalized
aliases. For more information on fields in ytree, see Fields in ytree.

How many trees are there?

The total number of trees in the arbor can be found using the size
attribute. As soon as any information about the collection of trees within the
loaded dataset is requested, arrays will be created containing the metadata
required for generating the root nodes of every tree.

>>> print (a.size)
Loading tree roots: 100%|██████| 5105985/5105985 [00:00<00:00, 505656111.95it/s]
327

Root Fields

Field data for all tree roots is accessed by querying the
Arbor in a
dictionary-like manner.

>>> print (a["mass"])
Getting root fields: 100%|██████████████████| 327/327 [00:00<00:00, 9108.67it/s]
[6.57410072e+14 5.28489209e+14 5.18129496e+14 4.88920863e+14, ...,
 8.68489209e+11 8.68489209e+11 8.68489209e+11] Msun

ytree uses the unyt [https://unyt.readthedocs.io/] package for symbolic units
on NumPy arrays.

>>> print (a["virial_radius"].to("Mpc/h"))
[1.583027 1.471894 1.462154 1.434253 1.354779 1.341322 1.28617, ...,
 0.173696 0.173696 0.173696 0.173696 0.173696] Mpc/h

When dealing with cosmological simulations, care must be taken to distinguish
between comoving and proper reference frames. Please read An Important Note on Comoving and Proper Units before
your magical ytree journey begins.

Accessing Individual Trees

Individual trees can be accessed by indexing the
Arbor object.

>>> print (a[0])
TreeNode[12900]

A TreeNode is one halo in a merger tree.
The number is the universal identifier associated with halo. It is unique
to the whole arbor. Fields can be accessed for any given
TreeNode in the same dictionary-like
fashion.

>>> my_tree = a[0]
>>> print (my_tree["mass"])
657410071942446.1 Msun

Array slicing can also be used to select multiple
TreeNode objects. This will return a
generator that can be iterated over or cast to a list.

>>> every_second_tree = list(a[::2])
>>> print (every_second_tree[0]["mass"])
657410071942446.1 Msun

Note, the Arbor object does not
store individual TreeNode objects, it
only generates them. Thus, one must explicitly keep around any
TreeNode object for changes to persist.
This is illustrated below:

>>> # this will not work
>>> a[0].thing = 5
>>> print (a[0].thing)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'TreeNode' object has no attribute 'thing'
>>> # this will work
>>> my_tree = a[0]
>>> my_tree.thing = 5
>>> print (my_tree.thing)
5

The only exception to this is computing the number of nodes in a tree. This
information will be propagated back to the
Arbor as it can be expensive to compute
for large trees.

>>> my_tree = a[0]
print (my_tree.tree_size) # call function to calculate tree size
691
>>> new_tree = a[0]
print (new_tree.tree_size) # retrieved from a cache
691

Accessing the Nodes in a Tree or Forest

A node is defined as a single halo at a single time in a merger tree.
Throughout these docs, the words halo and node are used interchangeably.
Nodes in a given tree can be accessed in three different ways: by
Accessing All Nodes in a Tree, Accessing All Nodes in a Forest, or Accessing the Progenitor Lineage of a Tree.
Each of these will return a generator of
TreeNode objects or field
values for all TreeNode objects
in the tree, forest, or progenitor line. To get a specific node from a
tree, see Accessing a Single Node in a Tree.

Note

Access by forest is supported even for datasets that do not
group trees by forest. If you have no requirement for the order in
which nodes are to be returned, then access by forest is recommended
as it will be considerably faster than access by tree. Access by tree
is effectively a depth-first walk through the tree. This requires
additional data structures to be built, whereas forest access does
not.

 Loading Data

Loading Data

Below are instructions for loading all supported datasets. All examples
use the freely available Sample Data.

Amiga Halo Finder

The Amiga Halo Finder [http://popia.ft.uam.es/AHF/Download.html] format
stores data in a series of files, with one each per snapshot. Parameters
are stored in “.parameters” and “.log” files, halo information in
“.AHF_halos” files, and descendent/ancestor links are stored in “.AHF_mtree”
files. Make sure to keep all of these together. To load, provide the name
of the first “.parameter” file.

>>> import ytree
>>> a = ytree.load("ahf_halos/snap_N64L16_000.parameter",
... hubble_constant=0.7)

Note

Four important notes about loading AHF data:

	The dimensionless Hubble parameter is not provided in AHF
outputs. This should be supplied by hand using the
hubble_constant keyword. The default value is 1.0.

	If the “.log” file is named in a unconventional way or cannot
be found for some reason, its path can be specified with the
log_filename keyword argument. If no log file exists,
values for omega_matter, omega_lambda, and box_size
(in units of Mpc/h) can be provided with keyword arguments
named thusly.

	There will be no “.AHF_mtree” file for index 0 as the
“.AHF_mtree” files store links between files N-1 and N.

	ytree is able to load data where the graph has been
calculated instead of the tree. However, even in this case,
only the tree is preserved in ytree. See the Amiga Halo
Finder Documentation [http://popia.ft.uam.es/AHF/Documentation.html]
for a discussion of the difference between graphs and trees.

 Fields in ytree

Fields in ytree

ytree supports multiple types of fields, each representing numerical
values associated with each halo in the
Arbor. These include the
native fields stored on disk, alias fields, derived fields, and
analysis fields.

The Field Info Container

Each Arbor contains a dictionary,
called field_info,
with relevant information for each available field. This information
can include the units, type of field, any dependencies or aliases, and
things relevant to reading the data from disk.

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> print (a.field_info["Rvir"])
{'description': 'Halo radius (kpc/h comoving).', 'units': 'kpc/h ', 'column': 11,
 'aliases': ['virial_radius']}
>>> print (a.field_info["mass"])
{'type': 'alias', 'units': 'Msun', 'dependencies': ['Mvir']}

Fields on Disk

Every field stored in the dataset’s files should be available within
the Arbor. The field_list
contains a list of all fields on disk
with their native names.

>>> print (a.field_list)
['scale', 'id', 'desc_scale', 'desc_id', 'num_prog', ...]

Alias Fields

Because the various dataset formats use different naming conventions for
similar fields, ytree allows fields to be referred to by aliases. This
allows for a universal set of names for the most common fields. Many are
added by default, including “mass”, “virial_radius”, “position_<xyz>”,
and “velocity_<xyz>”. The list of available alias and derived fields
can be found in the derived_field_list.

>>> print (a.derived_field_list)
['uid', 'desc_uid', 'scale_factor', 'mass', 'virial_mass', ...]

Additional aliases can be added with
add_alias_field.

>>> a.add_alias_field("amount_of_stuff", "mass", units="kg")
>>> print (a["amount_of_stuff"])
[1.30720461e+45, 1.05085632e+45, 1.03025691e+45, ...
1.72691772e+42, 1.72691772e+42, 1.72691772e+42]) kg

Derived Fields

Derived fields are functions of existing fields, including other
derived and alias fields. New derived fields are created by
providing a defining function and calling
add_derived_field.

>>> def potential_field(field, data):
... # data.arbor points to the parent Arbor
... return data["mass"] / data["virial_radius"]
...
>>> a.add_derived_field("potential", potential_field, units="Msun/Mpc")
[2.88624262e+14 2.49542426e+14 2.46280488e+14, ...
3.47503685e+12 3.47503685e+12 3.47503685e+12] Msun/Mpc

Field functions should take two arguments. The first is a dictionary
that will contain basic information about the field, such as its name.
The second argument represents the data container for which the field
will be defined. It can be used to access field data for any other
available field. This argument will also have access to the parent
Arbor as data.arbor.

Vector Fields

For fields that have x, y, and z components, such as position, velocity,
and angular momentum, a single field can be queried to return an array
with all the components. For example, for fields named “position_x”,
“position_y”, and “position_z”, the field “position” will return the
full vector.

>>> print (a["position"])
[[0.0440018, 0.0672202, 0.9569643],
 [0.7383264, 0.1961563, 0.0238852],
 [0.7042797, 0.6165487, 0.500576],
 ...
 [0.1822363, 0.1324423, 0.1722414],
 [0.8649974, 0.4718005, 0.7349876]]) unitary

A list of defined vector fields can be seen by doing:

>>> print (a.field_info.vector_fields)
('position', 'velocity', 'angular_momentum')

For all vector fields, a “_magnitude” field also exists, defined as the
quadrature sum of the components.

>>> print (a["velocity_magnitude"])
[488.26936644 121.97143067 146.81450507, ...
 200.74057711 166.13782652 529.7336846] km/s

Only specifically registered fields will be available as vector fields.
For example, saved Analysis Fields with x,y,z components will
not automatically be available. However, vector fields can be created
with the add_vector_field
function.

>>> a.add_vector_field("thing")

The above example assumes that fields named “thing_x”, “thing_y”,
and “thing_z” already exist.

Analysis Fields

Analysis fields provide a means for saving the results of complicated
analysis for any halo in the Arbor.
This would be operations beyond derived fields, for example, things that
might require loading the original simulation snapshots. New analysis
fields are created with
add_analysis_field and are
initialized to zero.

>>> a.add_analysis_field("saucer_sections", units="m**2")
>>> my_tree = a[0]
>>> print (my_tree["tree", "saucer_sections"])
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0.,] m**2
>>> import numpy as np
>>> for halo in my_tree["tree"]:
... halo["saucer_sections"] = np.random.random() # complicated analysis
...
>>> print (my_tree["tree", "saucer_sections"])
[0.33919263 0.79557815 0.38264336 0.53073945 0.09634924 0.6035886, ...
 0.9506636 0.9094426 0.85436984 0.66779632 0.58816873] m**2

Analysis fields will be saved when the
TreeNode objects that have been
analyzed are saved with save_arbor
or save_tree.

>>> my_trees = list(a[:]) # all trees
>>> for my_tree in my_trees:
... # do analysis...
>>> a.save_arbor(trees=my_trees)

Note that we do my_trees = list(a[:]) and not just my_trees =
a[:]. This is because a[:] is a generator that will return a new
set of trees each time. The newly generated trees will not retain
changes made to any analysis fields. Thus, we must use list(a[:])
to explicitly store a list of trees.

Re-saving Analysis Fields

All analysis fields are saved to sidecar files with the “-analysis” keyword
appended to them. They can be altered and the arbor re-saved as many times
as you like. In the very specific case of re-saving all trees and not
providing a new filename or custom list of fields (as in the example above),
analysis fields will be saved in place (i.e., over-writing the “-analysis”
files). The conventional on-disk fields will not be re-saved as they cannot
be altered.

 Plotting Merger Trees

Plotting Merger Trees

Some relatively simple visualizations of merger trees can be made with
the TreePlot command.

Additional Dependencies

Making merger tree plots with ytree requires the
pydot [https://pypi.org/project/pydot/] and
graphviz [https://www.graphviz.org/] packages. pydot can be
installed with pip and the
graphviz [https://www.graphviz.org/] website provides a number
of installation options.

Making Tree Plots

The TreePlot command can be
used to create a digraph [https://en.wikipedia.org/wiki/Directed_graph]
depicting halos as filled circles with sizes proportional to their mass.
The main progenitor line will be colored red.

>>> import ytree
>>> a = ytree.load("ahf_halos/snap_N64L16_000.parameter",
... hubble_constant=0.7)
>>> p = ytree.TreePlot(a[0], dot_kwargs={'rankdir': 'LR', 'size': '"12,4"'})
>>> p.save('tree.png')

[image: _images/tree.png]

Plot Modifications

Four TreePlot attributes can be set
to modify the default plotting behavior. These are:

	size_field: The field to determine the size of each circle. Default:
‘mass’.

	size_log: Whether to scale circle sizes based on log of size field.
Default: True.

	min_mass: The minimum halo mass to be included in the plot. If given
as a float, units are assumed to be Msun. Default: None.

	min_mass_ratio: The minimum ratio between a halo’s mass and the mass
of the main halo to be included in the plot. Default: None.

>>> import ytree
>>> a = ytree.load("ahf_halos/snap_N64L16_000.parameter",
... hubble_constant=0.7)
>>> p = ytree.TreePlot(a[0], dot_kwargs={'rankdir': 'LR', 'size': '"12,4"'})
>>> p.min_mass_ratio = 0.01
>>> p.save('tree_small.png')

[image: _images/tree_small.png]

Customizing Node Appearance

The appearance of the nodes can be customized by providing a function that
returns a dictionary of keywords that will be used to create the pydot
node. This should accept a single argument that is a
TreeNode object representing the
halo to be plotted. For example, the following function will add labels of
the halo id and mass and make the node shape square. It will also color
the most massive progenitor red.

def my_node(halo):
 prog = list(halo.find_root()['prog', 'uid'])
 if halo['uid'] in prog:
 color = 'red'
 else:
 color = 'black'

 label = \
 """
 id: %d
 mass: %.2e Msun
 """ % (halo['uid'], halo['mass'].to('Msun'))

 my_kwargs = {"label": label, "fontsize": 8,
 "shape": "square", "color": color}
 return my_kwargs

This function is then provided with the node_function keyword.

>>> p = ytree.TreePlot(tree, dot_kwargs={'rankdir': "BT"},
... node_function=my_node)
>>> p.save('tree_custom_node.png')

[image: _images/tree_custom_node.png]

Customizing Edge Appearance

The edges of the plot are the lines connecting each of the nodes. Similar to
the nodes, their appearance can be customized by providing a function that
returns a dictionary of keywords that will be used to create the pydot
edge. This should accept two
TreeNode arguments representing
the ancestor and descendent halos being connected by the edge. The example
below colors the edges blue when the descendent is less massive than its
ancestor and green when the descendent is more than 10 times more massive
than its ancestor.

def my_edge(ancestor, descendent):
 if descendent['mass'] < ancestor['mass']:
 color = 'blue'
 elif descendent['mass'] / ancestor['mass'] > 10:
 color = 'green'
 else:
 color = 'black'

 my_kwargs = {"color": color, "penwidth": 5}
 return my_kwargs

This function is then provided with the edge_function keyword.

>>> p = ytree.TreePlot(tree, dot_kwargs={'rankdir': "BT"},
... node_function=my_node,
... edge_function=my_edge)
>>> p.save('tree_custom_edge.png')

[image: _images/tree_custom_edge.png]

Supported Output Formats

Plots can be saved to any format supported by graphviz by giving a
filename with the appropriate extension. See
here [https://www.graphviz.org/doc/info/output.html] for a list of
currently supported formats.

 Parallel Computing with ytree

Parallel Computing with ytree

ytree provides functions for iterating over trees and nodes in
parallel. Underneath, they make use of the
parallel_objects [http://yt-project.org/docs/dev/reference/api/yt.utilities.parallel_tools.parallel_analysis_interface.html#yt.utilities.parallel_tools.parallel_analysis_interface.parallel_objects]
function in yt. This functionality is built on MPI [https://en.wikipedia.org/wiki/Message_Passing_Interface], so it
can be used to parallelize analysis across multiple nodes of a
distributed computing system.

Note

Before reading this section, consult the
Parallel Computation With yt [http://yt-project.org/docs/dev/analyzing/parallel_computation.html#parallel-computation] section of the yt documentation to
learn how to configure yt for running in parallel.

 Analyzing Merger Trees

Analyzing Merger Trees

This section describes the preferred method for performing analysis
on merger trees that results in modification of the dataset (e.g., by
creating or altering Analysis Fields) or writing additional
files. The end of this section, Putting it all Together: Parallel Analysis, illustrates
an analysis workflow that will run in parallel.

When performing the same analysis on a large number of items, we often
think in terms of creating an “analysis pipeline”, where a series of
discrete actions, including deciding whether to skip a given item, are
embedded within a loop over all the items to analyze. For merger
trees, this may look something like the following:

import ytree

a = ytree.load(...)

trees = list(a[:])
for tree in trees:
 for node in tree["forest"]:

 # only analyze above some minimum mass
 if node["mass"] < a.quan(1e11, "Msun"):
 continue

 # get simulation snapshot associated with this halo
 snap_fn = get_filename_from_redshift(node["redshift"])
 ds = yt.load(snap_fn)

 # get sphere using halo's center and radius
 center = node["position"].to("unitary")
 radius = node["virial_radius"].to("unitary")
 sp = ds.sphere((center, "unitary"), (radius, "unitary"))

 # calculate gas mass and save to field
 node["gas_mass"] = sp.quantities.total_quantity(("gas", "mass"))

 # make a projection and save an image
 p = yt.ProjectionPlot(ds, "x", ("gas", "density"),
 data_source=sp, center=sp.center,
 width=2*sp.width)
 p.save("my_analysis/projections/")

There are a few disadvantages of this approach. The inner loop is very
long. It can be difficult to understand the full set of actions,
especially if you weren’t the one who wrote it. If there is a section
you no longer want to do, a whole block of code needs to be commented
out or removed, and it may be tricky to tell if doing that will break
something else. Putting the operations into functions will make this
simpler, but it can still make for a large code block in the inner
loop. As well, if the structure of the loops over trees or nodes is
more complicated than the above, there is potential for the code to be
non-trivial to digest.

The AnalysisPipeline

The AnalysisPipeline allows
you to design the analysis workflow in advance and then use it to
process a tree or node with a single function call. Skipping straight
to the end, the loop from above will take the form:

for tree in trees:
 for node in tree["forest"]:
 ap.process_target(node)

In the above example, “ap” is some
AnalysisPipeline object
that we have defined earlier. We will now take a closer look at how to
design a workflow using this method.

Creating an AnalysisPipeline

An AnalysisPipeline is
instantiated with no arguments. Only an optional output directory
inside which new files will be written can be specified with the
output_dir keyword.

import ytree

ap = ytree.AnalysisPipeline(output_dir="my_analysis")

The output directory will be created automatically if it does not
already exist.

Creating Pipeline Operations

An analysis pipeline is assembled by creating functions that accept a
single TreeNode as an
argument.

def say_hello(node):
 print (f"This is node {node}! I will now be analyzed.")

This function can now be added to an existing pipeline with the
add_operation
function.

ap.add_operation(say_hello)

Now, when the
process_target
function is called with a
TreeNode object, the
say_hello function will be called with that
TreeNode. Any additional
calls to
add_operation
will result in those functions also being called with that
TreeNode in the same order.

Adding Extra Function Arguments

Functions can take additional arguments and keyword arguments as
well.

def print_field_value(node, field, units=None):
 val = node[field]
 if units is not None:
 val.convert_to_units(units)
 print (f"Value of {field} for node {node} is {val}.")

The additional arguments and keyword arguments are then provided when
calling
add_operation.

ap.add_operation(print_field_value, "mass")
ap.add_operation(print_field_value, "virial_radius", units="kpc/h")

Organizing File Output by Operation

In the same way that the
AnalysisPipeline object
accepts an output_dir keyword, analysis functions can also accept
an output_dir keyword.

def save_something(node, output_dir=None):
 # make an HDF5 file named by the unique node ID
 filename = f"node_{node.uid}.h5"
 if output_dir is not None:
 filename = os.path.join(output_dir, filename)

 # do some stuff...

meanwhile, back in the pipeline...
ap.add_operation(save_something, output_dir="images")

This output_dir keyword will be intercepted by the
AnalysisPipeline object to
ensure that the directory gets created if it does not already
exist. Additionally, if an output_dir keyword was given when the
AnalysisPipeline was
created, as in the example above, the directory associated with the
function will be appended to that. Following the examples here, the
resulting directory would be “my_analysis/images”, and the code above
will correctly save to that location.

Using a Function as a Filter

Making an analysis function return True or False allows it to
act as a filter. If a function returns False, then any
additional operations defined in the pipeline will not be
performed. For example, we might create a mass filter like this:

def minimum_mass(node, value):
 return node["mass"] >= value

later, in the pipeline
ap.add_operation(minimum_mass, a.quan(1e11, "Msun"))

The pipeline will interpret any return value from an operation that is
not None in a boolean context to use as a filter.

Adding Operations that Always Run

As discussed above in Using a Function as a Filter, returning False
from an operation will prevent all further operations in the pipeline
from being performed on that node. However, there may be operations
that you want to always run, regardless of previous filters. For
example, there may be clean up operations, like freeing up memory,
that should run for every node, no matter what. To accomplish this,
the always_do keyword can be set to True in the call to
add_operation.

def delete_attributes(node, attributes):
 for attr in attributes:
 if hasattr(node, attr):
 delattr(node, attr)

later, in the pipeline
ap.add_operation(delete_attributes, ["ds", "sphere"], always_do=True)

Modifying a Node

There may be occasions where you want to pass local variables or
objects around from one function to the next. The easiest way to do
this is by attaching them to the
TreeNode object itself as an
attribute. For example, say we have a function that returns a
simulation snapshot loaded with yt as a function of redshift. We
might do something like the the following to then pass it to another
function which creates a yt sphere.

def get_yt_dataset(node):
 # assume you have something like this
 filename = get_filename_from_redshift(node["redshift"])
 # attach it to the node for later use
 node.ds = yt.load(filename)

def get_yt_sphere(node):
 # this works if get_yt_dataset has been called first
 ds = node.ds

 center = node["position"].to("unitary")
 radius = node["virial_radius"].to("unitary")
 node.sphere = ds.sphere((center, "unitary"), (radius, "unitary"))

Then, we can add these to the pipeline such that a later function can
use the sphere.

ap.add_operation(get_yt_dataset)
ap.add_operation(get_yt_sphere)

To clean things up, we can make a function to remove attributes and
add it to the end of the pipeline.

def delete_attributes(node, attributes):
 for attr in attributes:
 if hasattr(node, attr):
 delattr(node, attr)

later, in the pipeline
ap.add_operation(delete_attributes, ["ds", "sphere"], always_do=True)

See Adding Operations that Always Run for a discussion of the always_do
option.

Running the Pipeline

Once the pipeline has been defined through calls to
add_operation,
it is now only a matter of looping over the nodes we want to analyze
and calling
process_target
with them.

for tree in trees:
 for node in tree["forest"]:
 ap.process_target(node)

Depending on what you want to do, you may want to call
process_target
with an entire tree and skip the inner loop. After all, a tree in this
context is just another
TreeNode object, only one
that has no descendent.

Creating a Analysis Recipe

Through the previous examples, we have designed a workflow by defining
functions and adding them to our pipeline in the order we want them to
be called. Has it resulted in fewer lines of code? No. But it has
allowed us to construct a workflow out of a series of reusable parts,
so the creation of future pipelines will certainly involve fewer lines
of code. It is also possible to define a more complex series of
operations as a “recipe” that can be added in one go to the pipeline
using the
add_recipe
function. A recipe should be a function that, minimally, accepts an
AnalysisPipeline object as
the first argument, but can also accept more. Below, we will define a
recipe for calculating the gas mass for a halo. For our purposes,
assume the functions we created earlier exist here.

def calculate_gas_mass(node):
 sphere = node.sphere
 node["gas_mass"] = sphere.quantities.total_quantity(("gas", "mass"))

def gas_mass_recipe(pipeline):
 pipeline.add_operation(get_yt_dataset)
 pipeline.add_operation(get_yt_sphere)
 pipeline.add_operation(calculate_gas_mass)
 pipeline.add_operation(delete_attributes, ["ds", "sphere"])

Now, our entire analysis pipeline design can look like this.

ap = ytree.AnalysisPipeline()
ap.add_recipe(gas_mass_recipe)

See the
add_recipe
docstring for an example of including additional function arguments.

Putting it all Together: Parallel Analysis

To unleash the true power of the
AnalysisPipeline, run it in
parallel using one of the Parallel Iterators. See
Parallel Computing with ytree for more information on using ytree on
multiple processors.

import ytree

a = ytree.load("arbor/arbor.h5")
if "test_field" not in a.field_list:
 a.add_analysis_field("gas_mass", default=-1, units="Msun")

ap = ytree.AnalysisPipeline()
ap.add_recipe(gas_mass_recipe)

trees = list(a[:])
for node in ytree.parallel_nodes(trees):
 ap.process_target(node)

If you need some inspiration, have a look at some Example Applications.

 Example Applications

Example Applications

Below are some examples of things one might want to do with merger
trees that demonstrate various ytree functions. If you have made
something interesting, please add it!

Halo Age (a50)

One way to define the age of a halo is by calculating the scale factor
when it reached 50% of its current mass. This is often referred to as
“a50”. In the example below, this is calculated by linearly
interpolating from the mass of the main progenitor.

import numpy as np

def calc_a50(node):
 # main progenitor masses
 pmass = node["prog", "mass"]

 mh = 0.5 * node["mass"]
 m50 = pmass <= mh

 if not m50.any():
 ah = node["scale_factor"]
 else:
 pscale = node["prog", "scale_factor"]
 # linearly interpolate
 i = np.where(m50)[0][0]
 slope = (pscale[i-1] - pscale[i]) / (pmass[i-1] - pmass[i])
 ah = slope * (mh - pmass[i]) + pscale[i]

 node["a50"] = ah

Now we’ll run it using the The AnalysisPipeline.

>>> import ytree
>>> a = ytree.load("consistent_trees/tree_0_0_0.dat")
>>> a.add_analysis_field("a50", "")

>>> ap = ytree.AnalysisPipeline()
>>> ap.add_operation(calc_a50)

>>> trees = list(a[:])
>>> for tree in trees:
... ap.process_target(tree)

>>> fn = a.save_arbor(filename="halo_age", trees=trees)
>>> a2 = ytree.load(fn)
>>> print (a2[0]["a50"])
0.57977664

Significance

Brought to you by John Wise, a halo’s significance is calculated by
recursively summing over all ancestors the mass multiplied by the time
between snapshots. When determining the main progenitor of a halo, the
significance measure will select for the ancestor with the deeper
history instead of just the higher mass. This can be helpful in cases
of near 1:1 mergers.

Below, we define a function that calculates the significance
for every halo in a single tree.

def calc_significance(node):
 if node.descendent is None:
 dt = 0. * node["time"]
 else:
 dt = node.descendent["time"] - node["time"]

 sig = node["mass"] * dt
 if node.ancestors is not None:
 for anc in node.ancestors:
 sig += calc_significance(anc)

 node["significance"] = sig
 return sig

Now, we’ll use the The AnalysisPipeline to calculate the
significance for all trees and save a new dataset. After loading the
new arbor, we use the
set_selector function to
use the new significance field to determine the progenitor line.

>>> a = ytree.load("tiny_ctrees/locations.dat")
>>> a.add_analysis_field("significance", "Msun*Myr")

>>> ap = ytree.AnalysisPipeline()
>>> ap.add_operation(calc_significance)

>>> trees = list(a[:])
>>> for tree in trees:
... ap.process_target(tree)

>>> fn = a.save_arbor(filename="significance", trees=trees)
>>> a2 = ytree.load(fn)
>>> a2.set_selector("max_field_value", "significance")
>>> prog = list(a2[0]["prog"])
>>> print (prog)
[TreeNode[1457223360], TreeNode[1452164856], TreeNode[1447024182], ...
 TreeNode[6063823], TreeNode[5544219], TreeNode[5057761]]

 Community Code of Conduct

Community Code of Conduct

ytree is a project by members of the yt community [http://yt-project.org/community.html]. As such, we stand by the
yt Community Code of Conduct [http://yt-project.org/community.html#codeofconduct].

Below is the ytree version of this code.

ytree Community Code of Conduct

The community of participants in open source Scientific projects is
made up of members from around the globe with a diverse set of skills,
personalities, and experiences. It is through these differences that
our community experiences success and continued growth. We expect
everyone in our community to follow these guidelines when interacting
with others both inside and outside of our community. Our goal is to
keep ours a positive, inclusive, successful, and growing community.

As members of the community,

	We pledge to treat all people with respect and provide a harassment-
and bullying-free environment, regardless of sex, sexual orientation
and/or gender identity, disability, physical appearance, body size,
race, nationality, ethnicity, and religion. In particular, sexual
language and imagery, sexist, racist, or otherwise exclusionary
jokes are not appropriate.

	We pledge to respect the work of others by recognizing
acknowledgment/citation requests of original authors. As authors, we
pledge to be explicit about how we want our own work to be cited or
acknowledged.

	We pledge to welcome those interested in joining the community, and
realize that including people with a variety of opinions and
backgrounds will only serve to enrich our community. In particular,
discussions relating to pros/cons of various technologies,
programming languages, and so on are welcome, but these should be
done with respect, taking proactive measure to ensure that all
participants are heard and feel confident that they can freely
express their opinions.

	We pledge to welcome questions and answer them respectfully, paying
particular attention to those new to the community. We pledge to
provide respectful criticisms and feedback in forums, especially in
discussion threads resulting from code contributions.

	We pledge to be conscientious of the perceptions of the wider
community and to respond to criticism respectfully. We will strive
to model behaviors that encourage productive debate and
disagreement, both within our community and where we are
criticized. We will treat those outside our community with the same
respect as people within our community.

We pledge to help the entire community follow the code of conduct, and
to not remain silent when we see violations of the code of conduct. We
will take action when members of our community violate this code such
as contacting the project manager, Britton Smith
(brittonsmith@gmail.com). All emails will be treated with the strictest
confidence or talking privately with the person.

This code of conduct applies to all community situations online and
offline, including mailing lists, forums, social media, conferences,
meetings, associated social events, and one-to-one interactions.

This Community Code of Conduct comes the
 yt Community Code
of Conduct, which was adapted from the
 Astropy
Community Code of Conduct, which was partially inspired by the PSF
code of conduct.

 Contributing to ytree

Contributing to ytree

ytree is a community project and it will be better with your
contribution.

Contributions are welcome in the form of code, documentation, or
just about anything. If you’re interested in getting involved,
please do!

ytree is developed using the same conventions as yt. The yt
Developer Guide [http://yt-project.org/docs/dev/developing/index.html]
is a good reference for code style, communication with other developers,
working with git, and issuing pull requests. For information specific
to ytree, such as testing and adding support for new file formats, see
the ytree Developer Guide [http://ytree.readthedocs.io/en/latest/Developing.html].

If you’d like to know more, contact Britton Smith (brittonsmith@gmail.com)
or come by the #ytree channel on the yt project Slack [https://yt-project.org/slack.html].

You can also find help on the yt developers list [http://lists.spacepope.org/listinfo.cgi/yt-users-spacepope.org].

 Developer Guide

Developer Guide

ytree is developed using the same conventions as yt. The yt
Developer Guide [http://yt-project.org/docs/dev/developing/index.html]
is a good reference for code style, communication with other developers,
working with git, and issuing pull requests. Below is a brief guide of
aspects that are specific to ytree.

Contributing in a Nutshell

Step zero, get out of that nutshell!

After that, the process for making contributions to ytree is roughly as
follows:

	Fork the main ytree repository [https://github.com/ytree-project/ytree].

	Create a new branch.

	Make changes.

	Run tests. Return to step 3, if needed.

	Issue pull request.

The yt Developer Guide [https://yt-project.org/docs/dev/developing/index.html] and
github [https://github.com/] documentation will help with the
mechanics of git and pull requests.

Testing

The ytree source comes with a series of tests that can be run to
ensure nothing unexpected happens after changes have been made. These
tests will automatically run when a pull request is issued or updated,
but they can also be run locally very easily. At present, the suite
of tests for ytree takes about three minutes to run.

Testing Data

The first order of business is to obtain the sample datasets. See
Sample Data for how to do so. Next, ytree must be configure to
know the location of this data. This is done by creating a configuration
file in your home directory at the location ~/.config/ytree/ytreerc.

$ mkdir -p ~/.config/ytree
$ echo [ytree] > ~/.config/ytree/ytreerc
$ echo test_data_dir = /Users/britton/ytree_data >> ~/.config/ytree/ytreerc
$ cat ~/.config/ytree/ytreerc
[ytree]
test_data_dir = /Users/britton/ytree_data

This path should point to the outer directory containing all the
sample datasets.

Installing Development Dependencies

A number of additional packages are required for testing. These can be
installed with pip from within the ytree source by doing:

$ pip install -e .[dev]

To see how these dependencies are defined, have a look at the
extras_require keyword argument in the setup.py file.

Run the Tests

The tests are run from the top level of the ytree source.

$ pytest tests
============================= test session starts ==============================
platform darwin -- Python 3.6.0, pytest-3.0.7, py-1.4.32, pluggy-0.4.0
rootdir: /Users/britton/Documents/work/yt/extensions/ytree/ytree, inifile:
collected 16 items

tests/test_arbors.py
tests/test_flake8.py .
tests/test_saving.py ...
tests/test_treefarm.py ..
tests/test_ytree_1x.py ..

========================= 16 passed in 185.03 seconds ==========================

Adding Support for a New Format

The Arbor class is reasonably
generalized such that adding support for a new file format
should be relatively straightforward. The existing frontends
also provide guidance for what must be done. Below is a brief
guide for how to proceed. If you are interested in doing this,
we will be more than happy to help!

Where do the files go?

As in yt, the code specific to one file format is referred to as a
“frontend”. Within the ytree source, each frontend is located in
its own directory within ytree/frontends. Name your
directory using lowercase and underscores and put it in there.

To allow your frontend to be directly importable at run-time, add
the name to the _frontends list in ytree/frontends/api.py.

Building Your Frontend

A very good way to build a new frontend is to start with an
existing frontend for a similar type of dataset. To see the variety
of examples, consult the Internal Classes section of the
API Reference.

To build a new frontend, you will need to make frontend-specific
subclasses for a few components. A straightforward way to do this
is to start with the script below, loading your data with it. Each
line will run correctly after a distinct phase of the implementation
is completed. As you progress, the next function needing implemented
will raise a NotImplementedError exception, indicating what
should be done next.

import ytree

Arbor subclass with working _is_valid function
a = ytree.load(<your data>)

Recognizing the available fields
print (a.field_list)

Calculate the number of trees in the dataset
print (a.size)

Create root TreeNode objects
my_tree = a[0]
print (my_tree)

Query fields for individual trees
print (my_tree['mass'])

Query fields for a whole tree
print (my_tree['tree', 'mass'])

Create TreeNodes for whole tree
for node in my_tree['tree']:
 print (node)

Query fields for all root nodes
print (a['mass'])

Putting it all together
a.save_arbor()

The components and the files in which they belong are:

	The Arbor itself (arbor.py).

	The file i/o (io.py).

	Recognizing frontend-specific fields (fields.py).

In addition to this, you will need to add a file called __init__.py,
which will allow your code to be imported. This file should minimally
import the frontend-specific Arbor
class. For example, the consistent-trees __init__.py looks like this:

from ytree.frontends.consistent_trees.arbor import \
 ConsistentTreesArbor

The _is_valid Function

Within every Arbor subclass should
appear a method called _is_valid. This function is used by
load to determine if the provided file is
the correct type. This function can examine the file’s naming convention
and/or open it and inspect its contents, whatever is required to uniquely
identify your frontend. Have a look at the various examples.

Two Types of Arbors

There are generally two types of merger tree data that ytree
ingests:

1. all merger tree data (full trees, halos, etc.) contained within
a single file. These include the consistent-trees,
consistent-trees-hdf5, lhalotree, and ytree frontends.

2. halos in files grouped by redshift (halo catalogs) that contain
the halo id for the descendent halo which lives in the next catalog.
An example of this is the rockstar frontend.

Depending on your case, different base classes should be subclassed.
This is discussed below. There are also hybrid formats that use
both merger tree and halo catalog files together. An example of this
is the ahf (Amiga Halo Finder) frontend.

Merger Tree Data in One File (or a few)

If this is your case, then the consistent-trees and “ytree” frontends
are the best examples to follow.

In arbor.py, your subclass of Arbor
should implement two functions, _parse_parameter_file and _plant_trees.

_parse_parameter_file: This is the first thing called when your
dataset is loaded. It is responsible for determining things like
box size, cosmological parameters, and the list of fields.

_plant_trees: This function is responsible for creating arrays
of the data required to build all the root
TreeNode objects in the
Arbor. The names of these
attributes are declared in the _node_io_attrs attribute. For
example, the
ConsistentTreesHDF5Arbor
class names three required attributes: _fi, the data file number in
which this tree lives; _si, the starting index of the section in the
data array corresponding to this tree; and _ei, the ending index in
the data array.

In io.py, you will implement the machinery responsible for
reading field data from disk. You must create a subclass of
the TreeFieldIO class and implement
the _read_fields function. This function accepts a single
root node (a TreeNode that is the root of a tree) and a list
of fields and should return a dictionary of NumPy arrays for each field.

Halo Catalog-style Data

If this is your case, then the rockstar and treefarm frontends
are the best examples to follow.

For this type of data, you will subclass the
CatalogArbor class, which is itself a
subclass of Arbor designed for this
type of data.

In arbor.py, your subclass should implement two functions,
_parse_parameter_file and _get_data_files. The purpose of
_parse_parameter_file is described above.

_get_data_files: This type of data is usually loaded by
providing one of the set of files. This function needs to figure
out how many other files there are and their names and construct a
list to be saved.

In io.py, you will create a subclass of
CatalogDataFile and implement two functions:
_parse_header and _read_fields.

_parse_header: This function reads any metadata specific to this
halo catalog. For exmaple, you might get the current redshift here.

_read_fields: This function is responsible for reading field
data from disk. This should minimally take a list of fields and
return a dictionary with NumPy arrays for each field for all halos
contained in the file. It should also, optionally, take a list of
TreeNode instances and return fields
only for them.

Field Units and Aliases (fields.py)

The FieldInfoContainer class holds
information about field names and units. Your subclass can define
two tuples, known_fields and alias_fields. The
known_fields tuple is used to set units for fields on disk.
This is useful especially if there is no way to get this information
from the file. The convention for each entry is (name on disk, units).

By creating aliases to standardized names, scripts can be run on
multiple types of data with little or no alteration for
frontend-specific field names. This is done with the alias_fields
tuple. The convention for each entry is (alias name, name on disk,
field units).

from ytree.data_structures.fields import \
 FieldInfoContainer

class NewCodeFieldInfo(FieldInfoContainer):
 known_fields = (
 # name on disk, units
 ("Mass", "Msun/h"),
 ("PX", "kpc/h"),
)

 alias_fields = (
 # alias name, name on disk, units for alias
 ("mass", "Mass", "Msun"),
 ("position_x", "PX", "Mpc/h"),
 ...
)

You made it!

That’s all there is to it! Now you too can do whatever it is
people do with merger trees. There are probably important things
that were left out of this document. If you find any, please consider
making an addition or opening an issue. If you’re stuck anywhere,
don’t hesitate to ask for help. If you’ve gotten this far, we
really want to see you make it to the finish!

Everyone Loves Samples

It would be especially great if you could provide a small sample dataset
with your new frontend, something less than a few hundred MB if possible.
This will ensure that your new frontend never gets broken and
will also help new users get started. Once you have some data, make an
addition to the arbor tests by following the example in
tests/test_arbors.py. Then, contact Britton Smith to arrange for
your sample data to be added to the ytree data [https://girder.hub.yt/#collection/59835a1ee2a67400016a2cda]
collection on the yt Hub [https://girder.hub.yt/].

Ok, now you’re totally done. Take the rest of the afternoon off.

 Help

Help

If you encounter problems, we want to help and there are lots
of places to get help. As an extension of the yt project [https://yt-project.org/], we are members of the yt community.
There is a dedicated #ytree channel on the yt project Slack [https://yt-project.org/slack.html] and questions can also
be posted to the yt users mailing list [https://mail.python.org/mailman3/lists/yt-users.python.org].
Bugs and feature requests can also be posted on the ytree issues
page [https://github.com/ytree-project/ytree/issues].

See you out there!

 Citing ytree

Citing ytree

If you use ytree in your work, please cite the following:

Smith et al., (2019). ytree: A Python package for analyzing merger
trees. Journal of Open Source Software, 4(44), 1881,
https://doi.org/10.21105/joss.01881

For BibTeX users:

@article{ytree,
 doi = {10.21105/joss.01881},
 url = {https://doi.org/10.21105/joss.01881},
 year = {2019},
 month = {dec},
 publisher = {The Open Journal},
 volume = {4},
 number = {44},
 pages = {1881},
 author = {Britton D. Smith and Meagan Lang},
 title = {ytree: A Python package for analyzing merger trees},
 journal = {Journal of Open Source Software}
}

If you would like to also cite the specific version of ytree used in
your work, include the following reference:

@software{britton_smith_2022_5959655,
 author = {Britton Smith and
 Meagan Lang and
 Juanjo Bazán},
 title = {ytree-project/ytree: ytree 3.1.1 Release},
 month = feb,
 year = 2022,
 publisher = {Zenodo},
 version = {ytree-3.1.1},
 doi = {10.5281/zenodo.5959655},
 url = {https://doi.org/10.5281/zenodo.5959655}
}

 Reference

Reference

Below are some reference materials for ytree, including API documentation
for all available functionality and a log of changes from each stable
release.

	API Reference
	Working with Merger Trees

	Visualizing Merger Trees

	Analysis Pipeline

	Parallelism

	Internal Classes

	ChangeLog
	Contributors

	Version 3.1.2

	Version 3.1.1

	Version 3.1

	Version 3.0

	Version 2.3

	Version 2.2.1

	Version 2.2

	Version 2.1.1

	Version 2.1

	Version 2.0.2

	Version 2.0

	Version 1.1

	Version 1.0

 API Reference

API Reference

Working with Merger Trees

The load can load all supported
merger tree formats. Once loaded, the
save_arbor and
save_tree functions can be
used to save the entire arbor or individual trees.

	load(filename[, method])

	Load an Arbor, determine the type automatically.

	Arbor(filename)

	Base class for all Arbor classes.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

	TreeNode(uid[, arbor, root])

	Class for objects stored in Arbors.

	get_leaf_nodes([selector])

	Get all leaf nodes from the tree of which this is the head.

	get_root_nodes()

	Get all root nodes from the forest to which this node belongs.

	get_node(selector, index)

	Get a single TreeNode from a tree.

	save_tree([filename, fields])

	Save the tree to a file.

	TreeNodeSelector(function[, args, kwargs])

	The TreeNodeSelector is responsible for choosing which one of a halo’s ancestors to return when querying the line of main progenitors for a halo.

	TreeNodeSelector(function[, args, kwargs])

	The TreeNodeSelector is responsible for choosing which one of a halo’s ancestors to return when querying the line of main progenitors for a halo.

	add_tree_node_selector(name, function)

	Add a TreeNodeSelector to the registry of known selectors, so they can be chosen with set_selector.

	max_field_value(ancestors, field)

	Return the TreeNode with the maximum value of the given field.

	min_field_value(ancestors, field)

	Return the TreeNode with the minimum value of the given field.

	get_yt_selection([above, below, equal, …])

	Get a selection of halos meeting given criteria.

	get_nodes_from_selection(container)

	Generate TreeNodes from a yt data container.

	ytds

	Load as a yt dataset.

Visualizing Merger Trees

Functionality for plotting merger trees.

	TreePlot(tree[, dot_kwargs, node_function, …])

	Make a simple merger tree plot using pydot and graphviz.

	save([filename])

	Save the merger tree plot.

Analysis Pipeline

Machinery for creating a pipeline of analysis to be run on halos
in a merger tree.

	AnalysisPipeline([output_dir])

	Initialize an AnalysisPipeline.

	add_operation(function, *args[, always_do])

	Add an operation to the AnalysisPipeline.

	add_recipe(function, *args, **kwargs)

	Add a recipe to the AnalysisPipeline.

	process_target(target)

	Process a node through the AnalysisPipeline.

	AnalysisOperation(function, *args[, always_do])

	An analysis task performed by an AnalysisPipeline.

Parallelism

Functions for iterating over trees and/or nodes in parallel.

	parallel_trees(trees[, save_every, …])

	Iterate over a list of trees in parallel.

	parallel_tree_nodes(tree[, group, njobs, …])

	Iterate over nodes in a single tree in parallel.

	parallel_nodes(trees[, group, save_every, …])

	Iterate over all nodes in a list of trees in parallel.

Internal Classes

Base Classes

All frontends inherit from these base classes for arbor, fields,
and i/o.

	Arbor(filename)

	Base class for all Arbor classes.

	SegmentedArbor(filename)

	Arbor subclass for multi-file datasets where an entire merger tree is contained within a file (i.e., no overlap).

	CatalogArbor(filename)

	Base class for Arbors created from a series of halo catalog files where the descendent ID for each halo has been pre-determined.

	Detector

	Base class for detecting field dependencies and testing operations.

	FieldDetector(arbor[, name])

	A fake field data container used to calculate dependencies.

	SelectionDetector(arbor)

	A TreeNode-like object to test select_halos criteria.

	FieldInfoContainer(arbor)

	A container for information about fields.

	FieldContainer(arbor)

	A container for field data.

	FieldIO(arbor[, default_dtype])

	Base class for FieldIO classes.

	TreeFieldIO(arbor[, default_dtype])

	IO class for getting fields for a tree.

	DefaultRootFieldIO(arbor[, default_dtype])

	Class for getting root fields from arbors that have no specialized storage for root fields.

	DataFile(filename)

	Base class for data files.

	CatalogDataFile(filename, arbor)

	Base class for halo catalog files.

Arbor Subclasses

Arbor subclasses for each frontend.

	AHFArbor(filename[, log_filename, …])

	Arbor for Amiga Halo Finder data.

	ConsistentTreesArbor(filename)

	Arbors loaded from consistent-trees tree_*.dat files.

	ConsistentTreesGroupArbor(filename)

	Arbors loaded from consistent-trees locations.dat files.

	ConsistentTreesHlistArbor(filename)

	Class for Arbors created from consistent-trees hlist_*.list files.

	ConsistentTreesHDF5Arbor(filename[, access])

	Arbors loaded from consistent-trees data converted into HDF5.

	LHaloTreeArbor(*args, **kwargs)

	Arbors for LHaloTree data.

	LHaloTreeHDF5Arbor(filename[, …])

	Arbors loaded from consistent-trees data converted into HDF5.

	MoriaArbor(filename)

	Arbors from Moria merger trees.

	RockstarArbor(filename)

	Class for Arbors created from Rockstar out_*.list files.

	TreeFarmArbor(filename)

	Class for Arbors created with TreeFarm.

	YTreeArbor(filename)

	Class for Arbors created from the save_arbor or save_tree functions.

FieldInfo Subclasses

Subclasses for frontend-specific field definitions.

	AHFFieldInfo(arbor)

	

	ConsistentTreesFieldInfo(arbor)

	

	ConsistentTreesHDF5FieldInfo(arbor)

	

	LHaloTreeFieldInfo(arbor)

	

	LHaloTreeHDF5FieldInfo(arbor)

	

	MoriaFieldInfo(arbor)

	

	RockstarFieldInfo(arbor)

	

	TreeFarmFieldInfo(arbor)

	

FieldIO Subclasses

Subclasses for data i/o from a whole dataset.

	ConsistentTreesTreeFieldIO(arbor[, …])

	

	ConsistentTreesHDF5TreeFieldIO(arbor[, …])

	

	ConsistentTreesHDF5RootFieldIO(arbor[, …])

	Read in fields for first node in all trees/forest.

	LHaloTreeTreeFieldIO(arbor[, default_dtype])

	

	LHaloTreeRootFieldIO(arbor[, default_dtype])

	

	LHaloTreeHDF5TreeFieldIO(arbor[, default_dtype])

	

	MoriaTreeFieldIO(arbor[, default_dtype])

	

	YTreeTreeFieldIO(arbor[, default_dtype])

	

	YTreeRootFieldIO(arbor[, default_dtype])

	

DataFile Subclasses

Subclasses for data i/o from individual files.

	AHFDataFile(filename, arbor)

	

	ConsistentTreesDataFile(filename)

	

	ConsistentTreesHlistDataFile(filename, arbor)

	

	ConsistentTreesHDF5DataFile(filename, linkname)

	

	LHaloTreeHDF5DataFile(filename, linkname)

	

	MoriaDataFile(filename)

	

	RockstarDataFile(filename, arbor)

	

	TreeFarmDataFile(filename, arbor)

	

	YTreeDataFile(filename)

	

 ytree.data_structures.load.load

ytree.data_structures.load.load

	
ytree.data_structures.load.load(filename, method=None, **kwargs)

	Load an Arbor, determine the type automatically.

	Parameters:

	
	filename (string) – Input filename.

	method (optional, string) – The type of Arbor to be loaded. Existing types are:
ConsistentTrees, Rockstar, TreeFarm, YTree. If not
given, the type will be determined based on characteristics
of the input file.

	kwargs (optional, dict) – Additional keyword arguments are passed to _is_valid and
the determined type.

	Returns:

	

	Return type:

	Arbor

Examples

>>> import ytree
>>> # saved Arbor (ytree format)
>>> a = ytree.load("arbor/arbor.h5")
>>> # Amiga Halo Finder
>>> a = ytree.load("ahf_halos/snap_N64L16_000.parameter",
... hubble_constant=0.7)
>>> # consistent-trees
>>> a = ytree.load("tiny_ctrees/locations.dat")
>>> a = ytree.load("consistent_trees/tree_0_0_0.dat")
>>> a = ytree.load("ctrees_hlists/hlists/hlist_0.12521.list")
>>> # consistent-trees-hdf5
>>> a = ytree.load("consistent_trees_hdf5/soa/forest.h5")
>>> # LHaloTree
>>> a = ytree.load("my_halos/trees_063.0")
>>> # LHaloTree-hdf5
>>> a = ytree.load("TNG50-4-Dark/trees_sf1_099.0.hdf5",
... box_size=35, hubble_constant=0.6774,
... omega_matter=0.3089, omega_lambda=0.6911)
>>> # Moria
>>> a = ytree.load("moria/moria_tree_testsim050.hdf5")
>>> # Rockstar
>>> a = ytree.load("rockstar_halos/out_0.list")
>>> # treefarm
>>> a = ytree.load("my_halos/fof_subhalo_tab_025.0.h5")
>>> # TreeFrog
>>> a = ytree.load("treefrog/VELOCIraptor.tree.t4.0-131.walkabletree.sage.forestID.foreststats.hdf5")

 ytree.data_structures.arbor.Arbor

ytree.data_structures.arbor.Arbor

	
class ytree.data_structures.arbor.Arbor(filename)

	Base class for all Arbor classes.

Loads a merger tree output file or a series of halo catalogs
and create trees, stored in an array in
trees.
Arbors can be saved in a universal format with
save_arbor. Also, provide some
convenience functions for creating unyt_arrays and unyt_quantities and
a cosmology calculator.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.data_structures.arbor.Arbor.add_alias_field

ytree.data_structures.arbor.Arbor.add_alias_field

	
Arbor.add_alias_field(alias, field, units=None, force_add=True)

	Add a field as an alias to another field.

	Parameters:

	
	alias (string) – Alias name.

	field (string) – The field to be aliased.

	units (optional, string) – Units in which the field will be returned.

	force_add (optional, bool) – If True, add field even if it already exists and warn the
user and raise an exception if dependencies do not exist.
If False, silently do nothing in both instances.
Default: True.

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> # "Mvir" exists on disk
>>> a.add_alias_field("mass", "Mvir", units="Msun")
>>> print (a["mass"])

 ytree.data_structures.arbor.Arbor.add_analysis_field

ytree.data_structures.arbor.Arbor.add_analysis_field

	
Arbor.add_analysis_field(name, units, dtype=None, default=0)

	Add an empty field to be filled by analysis operations.

	Parameters:

	
	name (string) – Field name.

	units (string) – Field units.

	dtype (optional, type) – Data type for field values. If None, the default data type
of the arbor is used.
Default: None.

	default (optional, numeric) – Default field value when field is initialized.
Default: 0.

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> a.add_analysis_field("robots", "Msun * kpc")
>>> # Set field for some halo.
>>> my_tree = a[0]
>>> my_tree["tree"][7]["robots"] = 1979.816

 ytree.data_structures.arbor.Arbor.add_derived_field

ytree.data_structures.arbor.Arbor.add_derived_field

	
Arbor.add_derived_field(name, function, units=None, dtype=None, description=None, vector_field=False, force_add=True)

	Add a field that is a function of other fields.

	Parameters:

	
	name (string) – Field name.

	function (callable) – The function to be called to generate the field.
This function should take two arguments, the
arbor and the data structure containing the
dependent fields. See below for an example.

	units (optional, string) – The units in which the field will be returned.

	dtype (optional, type) – The data type of the field array. If none, use the
default type set by Arbor._default_dtype.

	description (optional, string) – A short description of the field.

	vector_field (optional, bool) – If True, field is an xyz vector.
Default: False.

	force_add (optional, bool) – If True, add field even if it already exists and warn the
user and raise an exception if dependencies do not exist.
If False, silently do nothing in both instances.
Default: True.

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> def _redshift(field, data):
... return 1. / data["scale"] - 1
...
>>> a.add_derived_field("redshift", _redshift)
>>> print (a["redshift"])

 ytree.data_structures.arbor.Arbor.add_vector_field

ytree.data_structures.arbor.Arbor.add_vector_field

	
Arbor.add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

This will add a general vector field that returns the combined
x, y, z components as a single Nx3 array. A <field>_magnitude
field with the quadrature sum of the components is also added.

	Parameters:

	name (string) – The name of the field. Component x,y,z fields must exist.

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> for ax in 'xyz':
>>> a.add_analysis_field(f"thing_{ax}")
>>> fn = a.save_arbor()
>>> a_new = ytree.load(fn)
>>> a_new.add_vector_field("thing")
>>> print (a_new["thing"])
>>> print (a_new["thing_magnitude"])

 ytree.data_structures.arbor.Arbor.save_arbor

ytree.data_structures.arbor.Arbor.save_arbor

	
Arbor.save_arbor(**kwargs)

	Save the arbor to a file.

The saved arbor can be re-loaded as an arbor.

	Parameters:

	
	filename (optional, string) – Output file keyword. If filename ends in “.h5”,
the main header file will be just that. If not,
filename will be <filename>/<basename>.h5.
Default: “arbor”.

	fields (optional, list of strings) – The fields to be saved. If not given, all
fields will be saved.

	trees (optional, list or array of TreeNodes) – If given, only save trees stemming from these nodes.
If not provide, all trees will be saved.

	max_file_size (optional, float) – The maximum number of nodes saved to a single file.
Smaller numbers will result in more files. Performance
may change somewhat with different values.
Default: 524288 (2^19).

	Returns:

	header_filename – The filename of the saved arbor.

	Return type:

	string

Examples

>>> import ytree
>>> a = ytree.load("rockstar_halos/trees/tree_0_0_0.dat")
>>> fn = a.save_arbor()
>>> # reload it
>>> a2 = ytree.load(fn)

 ytree.data_structures.arbor.Arbor.select_halos

ytree.data_structures.arbor.Arbor.select_halos

	
Arbor.select_halos(criteria, trees=None, select_from=None, fields=None)

	Select halos from the arbor based on a set of criteria given as a string.

Halos matching the criteria will be returned through a generator. Matches
are returned as soon as they are found, allowing you to begin working
with them before the search has completed. The progress bar will update
to report the number of matches found as the search progresses.

	Parameters:

	
	criteria (string) – A string that will eval to a Numpy-like selection operation
performed on a TreeNode object called “tree”.
Example: ‘tree[“tree”, “redshift”] > 1’

	trees (optional, list or array of TreeNodes) – A list or array of TreeNode objects in which to search. If none given,
the search is performed over the full arbor.

	select_from (deprecated, do not use) – This keyword is no longer required and using it does nothing.

	fields (deprecated, do not use) – This keyword is no longer required and using it does nothing.

	Returns:

	halos – A generator yielding all TreeNodes meeting the criteria.

	Return type:

	TreeNode generator

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> for halo in a.select_halos('tree["tree", "redshift"] > 1'):
... print (halo["mass"])
>>>
>>> halos = list(a.select_halos('tree["prog", "mass"].to("Msun") >= 1e10'))
>>> print (len(halos))

 ytree.data_structures.arbor.Arbor.set_selector

ytree.data_structures.arbor.Arbor.set_selector

	
Arbor.set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

This sets the manner in which halo progenitors are
chosen from a list of ancestors. The most obvious example
is to select the most massive ancestor.

	Parameters:

	
	selector (string) – Name of the selector to be used.

	additional arguments and keywords to be provided to (Any) –

	selector function should follow. (the) –

Examples

>>> import ytree
>>> a = ytree.load("rockstar_halos/trees/tree_0_0_0.dat")
>>> a.set_selector("max_field_value", "mass")

 ytree.data_structures.tree_node.TreeNode

ytree.data_structures.tree_node.TreeNode

	
class ytree.data_structures.tree_node.TreeNode(uid, arbor=None, root=False)

	Class for objects stored in Arbors.

Each TreeNode represents a halo in a tree. A TreeNode knows
its halo ID, the level in the tree, and its global ID in the
Arbor that holds it. It also has a list of its ancestors.
Fields can be queried for it, its progenitor list, and the
tree beneath.

	
__init__(uid, arbor=None, root=False)

	Initialize a TreeNode with at least its halo catalog ID and
its level in the tree.

Methods

	__init__(uid[, arbor, root])

	Initialize a TreeNode with at least its halo catalog ID and its level in the tree.

	clear_fields()

	If a root node, delete field data.

	find_root()

	Find the root node.

	get_leaf_nodes([selector])

	Get all leaf nodes from the tree of which this is the head.

	get_node(selector, index)

	Get a single TreeNode from a tree.

	get_root_nodes()

	Get all root nodes from the forest to which this node belongs.

	query(key)

	Return field values for this TreeNode, progenitor list, or tree.

	save_tree([filename, fields])

	Save the tree to a file.

	walk_to_root()

	Walk descendents until root.

Attributes

	ancestors

	Return a generator of ancestor nodes.

	desc_uids

	Array of descendent uids for all nodes in the tree.

	descendent

	Return the descendent node.

	is_root

	Is this node the last in the tree?

	tree_id

	Return the index of this node in a list of all nodes in the tree.

	tree_size

	Number of nodes in the tree.

	uids

	Array of uids for all nodes in the tree.

 ytree.data_structures.tree_node.TreeNode.get_leaf_nodes

ytree.data_structures.tree_node.TreeNode.get_leaf_nodes

	
TreeNode.get_leaf_nodes(selector=None)

	Get all leaf nodes from the tree of which this is the head.

This returns a generator of all leaf nodes belonging to this
tree. A leaf node is a node that has no ancestors.

	Parameters:

	selector (optional, str ("forest", "tree", or "prog")) – The tree selector from which leaf nodes will be found.
If none given, this will be set to “forest” if the
calling node is a root node and “tree” otherwise.

	Returns:

	leaf_nodes – TreeNode objects.

	Return type:

	a generator of

Examples

>>> import ytree
>>> a = ytree.load("tiny_ctrees/locations.dat")
>>> my_tree = a[0]
>>> for leaf in my_tree.get_leaf_nodes():
... print (leaf["mass"])

 ytree.data_structures.tree_node.TreeNode.get_root_nodes

ytree.data_structures.tree_node.TreeNode.get_root_nodes

	
TreeNode.get_root_nodes()

	Get all root nodes from the forest to which this node belongs.

This returns a generator of all root nodes in the forest. A root
node is a node that has no descendents.

	Returns:

	root_nodes – TreeNode objects.

	Return type:

	a generator of

Examples

>>> import ytree
>>> a = ytree.load("consistent_trees_hdf5/soa/forest.h5",
... access="forest")
>>> my_tree = a[0]
>>> for root in my_tree.get_root_nodes():
... print (root["mass"])

 ytree.data_structures.tree_node.TreeNode.get_node

ytree.data_structures.tree_node.TreeNode.get_node

	
TreeNode.get_node(selector, index)

	Get a single TreeNode from a tree.

Use this to get the nth TreeNode from a forest, tree, or
progenitor list for which the calling TreeNode is the head.

	Parameters:

	
	selector (str ("forest", "tree", or "prog")) – The tree selector from which to get the TreeNode. This
should be “forest”, “tree”, or “prog”.

	index (int) – The index of the desired TreeNode in the forest, tree,
or progenitor list.

	Returns:

	node

	Return type:

	TreeNode

Examples

>>> import ytree
>>> a = ytree.load("tiny_ctrees/locations.dat")
>>> my_tree = a[0]
>>> # get 6th TreeNode in the progenitor list
>>> my_node = my_tree.get_node('prog', 5)

 ytree.data_structures.tree_node.TreeNode.save_tree

ytree.data_structures.tree_node.TreeNode.save_tree

	
TreeNode.save_tree(filename=None, fields=None)

	Save the tree to a file.

The saved tree can be re-loaded as an arbor.

	Parameters:

	
	filename (optional, string) – Output file keyword. Main header file will be named
<filename>/<filename>.h5.
Default: “tree_<uid>”.

	fields (optional, list of strings) – The fields to be saved. If not given, all
fields will be saved.

	Returns:

	filename – The filename of the saved arbor.

	Return type:

	string

Examples

>>> import ytree
>>> a = ytree.load("rockstar_halos/trees/tree_0_0_0.dat")
>>> # save the first tree
>>> fn = a[0].save_tree()
>>> # reload it
>>> a2 = ytree.load(fn)

 ytree.data_structures.tree_node_selector.TreeNodeSelector

ytree.data_structures.tree_node_selector.TreeNodeSelector

	
class ytree.data_structures.tree_node_selector.TreeNodeSelector(function, args=None, kwargs=None)

	The TreeNodeSelector is responsible for choosing which one of a
halo’s ancestors to return when querying the line of main
progenitors for a halo.

	Parameters:

	
	ancestors (list of TreeNode objects) – List of TreeNode objects from which to select.

	function should return a single TreeNode. (The) –

Examples

>>> import ytree
>>> def max_value(ancestors, field):
... vals = np.array([a[field] for a in ancestors])
... return ancestors[np.argmax(vals)]
>>> ytree.add_tree_node_selector("max_field_value", max_value)
>>> a = ytree.load("tree_0_0_0.dat")
>>> a.set_selector("max_field_value", "mass")
>>> print (a[0]["prog"])

	
__init__(function, args=None, kwargs=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(function[, args, kwargs])

	Initialize self.

 ytree.data_structures.tree_node_selector.TreeNodeSelector

ytree.data_structures.tree_node_selector.TreeNodeSelector

	
class ytree.data_structures.tree_node_selector.TreeNodeSelector(function, args=None, kwargs=None)

	The TreeNodeSelector is responsible for choosing which one of a
halo’s ancestors to return when querying the line of main
progenitors for a halo.

	Parameters:

	
	ancestors (list of TreeNode objects) – List of TreeNode objects from which to select.

	function should return a single TreeNode. (The) –

Examples

>>> import ytree
>>> def max_value(ancestors, field):
... vals = np.array([a[field] for a in ancestors])
... return ancestors[np.argmax(vals)]
>>> ytree.add_tree_node_selector("max_field_value", max_value)
>>> a = ytree.load("tree_0_0_0.dat")
>>> a.set_selector("max_field_value", "mass")
>>> print (a[0]["prog"])

	
__init__(function, args=None, kwargs=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(function[, args, kwargs])

	Initialize self.

 ytree.data_structures.tree_node_selector.add_tree_node_selector

ytree.data_structures.tree_node_selector.add_tree_node_selector

	
ytree.data_structures.tree_node_selector.add_tree_node_selector(name, function)

	Add a TreeNodeSelector to the registry of known selectors, so they
can be chosen with set_selector.

	Parameters:

	
	name (string) – Name of the selector.

	function (callable) – The associated function.

Examples

>>> import ytree
>>> def max_value(ancestors, field):
... vals = np.array([a[field] for a in ancestors])
... return ancestors[np.argmax(vals)]
>>> ytree.add_tree_node_selector("max_field_value", max_value)
>>> a = ytree.load("tree_0_0_0.dat")
>>> a.set_selector("max_field_value", "mass")
>>> print (a[0]["prog"])

 ytree.data_structures.tree_node_selector.max_field_value

ytree.data_structures.tree_node_selector.max_field_value

	
ytree.data_structures.tree_node_selector.max_field_value(ancestors, field)

	Return the TreeNode with the maximum value of the given field.

	Parameters:

	
	ancestors (list of TreeNode objects) – List of TreeNode objects from which to select.

	field (string) – Field to be used for selection.

	Returns:

	

	Return type:

	TreeNode object

 ytree.data_structures.tree_node_selector.min_field_value

ytree.data_structures.tree_node_selector.min_field_value

	
ytree.data_structures.tree_node_selector.min_field_value(ancestors, field)

	Return the TreeNode with the minimum value of the given field.

	Parameters:

	
	ancestors (list of TreeNode objects) – List of TreeNode objects from which to select.

	field (string) – Field to be used for selection.

	Returns:

	

	Return type:

	TreeNode object

 ytree.frontends.ytree.arbor.YTreeArbor.get_yt_selection

ytree.frontends.ytree.arbor.YTreeArbor.get_yt_selection

	
YTreeArbor.get_yt_selection(above=None, below=None, equal=None, about=None, conditionals=None, data_source=None)

	Get a selection of halos meeting given criteria.

This function can be used to create database-like queries to search
for halos meeting various criteria. It will return a
YTCutRegion [http://yt-project.org/docs/dev/reference/api/yt.data_objects.selection_objects.cut_region.html#yt.data_objects.selection_objects.cut_region.YTCutRegion]
that can be queried to get field values for all halos meeting the
selection criteria. The
YTCutRegion [http://yt-project.org/docs/dev/reference/api/yt.data_objects.selection_objects.cut_region.html#yt.data_objects.selection_objects.cut_region.YTCutRegion]
can then be passed to
get_nodes_from_selection
to get all the
TreeNode objects that meet the
criteria.

If multiple criteria are provided, selected halos must meet all
criteria.

To specify a custom data container, use the ytds attribute
associated with the arbor to access the merger tree data as a yt
dataset. For example:

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> ds = a.ytds

	Parameters:

	
	above (optional, list of tuples with (field, value, <units>)) – Halos meeting a given criterion must have field values at or
above the provided limiting value. Each entry in the list must
contain the field name, limiting value, and (optionally) units.

	below (optional, list of tuples with (field, value, <units>)) – Halos meeting a given criterion must have field values at or
below the provided limiting value. Each entry in the list must
contain the field name, limiting value, and (optionally) units.

	equal (optional, list of tuples with (field, value, <units>)) – Halos meeting a given criterion must have field values equal to
the provided value. Each entry in the list must contain the
field name, value, and (optionally) units.

	about (optional, list of tuples with (field, value, tolerance, <units>)) – Halos meeting a given criterion must have field values within
the tolerance of the provided value. Each entry in the list must
contain the field name, value, tolerance, and (optionally) units.

	conditionals (optional, list of strings) – A list of conditionals for constructing a custom
YTCutRegion [http://yt-project.org/docs/dev/reference/api/yt.data_objects.selection_objects.cut_region.html#yt.data_objects.selection_objects.cut_region.YTCutRegion].
This can be used instead of above/below/equal/about to create
more complex selection criteria. See the Cut Regions section in the
yt documentation for more information. The conditionals keyword
can only be used if none of the first for selection keywords are
given.

	data_source (optional, YTDataContainer [http://yt-project.org/docs/dev/reference/api/yt.data_objects.data_containers.html#yt.data_objects.data_containers.YTDataContainer]) – The source yt data container to be used to make the cut region.
If none given, the
all_data container
(i.e., the full dataset) is used.

	Returns:

	cr – The cut region associated with the provided selection criteria.

	Return type:

	YTCutRegion [http://yt-project.org/docs/dev/reference/api/yt.data_objects.selection_objects.cut_region.html#yt.data_objects.selection_objects.cut_region.YTCutRegion]

Examples

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # select halos above 1e12 Msun at redshift > 0.5
>>> sel = a.get_yt_selection(
... above=[("mass", 1e13, "Msun"),
... ("redshift", 0.5)])
>>> print (sel["halos", "mass"])
>>> print (sel["halos", "virial_radius"])

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # select halos below 1e13 Msun at redshift > 1
>>> sel = a.get_yt_selection(
... below=[("mass", 1e13, "Msun")],
... above=[("redshift", 1)])
>>> print (sel["halos", "mass"])
>>> print (sel["halos", "virial_radius"])

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # select phantom halos (a consistent-trees field)
>>> sel = a.get_yt_selection(equal=[("phantom", 1)])

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # select halos with vmax of 200 +-10 km/s (i.e., 5%)
>>> sel = a.get_yt_selection(about=[("vmax", 200, "km/s", 0.05)])

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # use a yt conditional
>>> sel = a.get_yt_selection(
... conditionals=['obj["halos", "mass"] > 1e12'])

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # select halos only within a sphere
>>> ds = a.ytds
>>> sphere = ds.sphere(ds.domain_center, (10, Mpc))
>>> sel = a.get_yt_selection(
... above=[("mass", 1e13)],
... data_source=sphere)
>>> # get the TreeNodes for the selection
>>> for node in a.get_nodes_from_selection(sel):
... print (node["mass"])

See also

select_halos, get_nodes_from_selection

 ytree.frontends.ytree.arbor.YTreeArbor.get_nodes_from_selection

ytree.frontends.ytree.arbor.YTreeArbor.get_nodes_from_selection

	
YTreeArbor.get_nodes_from_selection(container)

	Generate TreeNodes from a yt data container.

All halos contained within the data container will be
returned as TreeNode objects. This returns a generator
that can be iterated over or cast as a list.

	Parameters:

	container (YTDataContainer [http://yt-project.org/docs/dev/reference/api/yt.data_objects.data_containers.html#yt.data_objects.data_containers.YTDataContainer]) – Data container, such as a sphere or region, from
which nodes will be generated.

	Returns:

	nodes – The TreeNode objects
contained within the container.

	Return type:

	generator

Examples

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> c = a.arr([0.5, 0.5, 0.5], "unitary")
>>> sphere = a.ytds.sphere(c, (0.1, "unitary"))
>>> for node in a.get_nodes_from_selection(sphere):
... print (node["mass"])

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # select halos above 1e12 Msun at redshift > 0.5
>>> sel = a.get_yt_selection(
... above=[("mass", 1e13, "Msun"),
... ("redshift", 0.5)])
>>> my_nodes = list(a.get_nodes_from_selection(sel))

 ytree.frontends.ytree.arbor.YTreeArbor.ytds

ytree.frontends.ytree.arbor.YTreeArbor.ytds

	
YTreeArbor.ytds

	Load as a yt dataset.

Merger tree data is loaded as a yt dataset, providing full access
to yt functionality. Fields are accessed with the naming convention,
(“halos”, <field name>).

Examples

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>>
>>> ds = a.ytds
>>> sphere = ds.sphere(ds.domain_center, (5, "Mpc"))
>>> print (sphere["halos", "mass"])
>>>
>>> for node in a.get_nodes_from_selection(sphere):
... print (node["position"])

 ytree.visualization.tree_plot.TreePlot

ytree.visualization.tree_plot.TreePlot

	
class ytree.visualization.tree_plot.TreePlot(tree, dot_kwargs=None, node_function=None, edge_function=None)

	Make a simple merger tree plot using pydot and graphviz.

	Parameters:

	
	tree (merger tree node TreeNode) – The merger tree to be plotted.

	dot_kwargs (optional, dict) – A dictionary of keyword arguments to be passed to pydot.Dot.
Default: None.

	node_function (optional, function) – A function accepting a single argument of a
TreeNode and returning a
dictionary of keywords to be given to pydot for creating the node
object on the plot. This can be used to customize the appearance of
the nodes. See examples below.
Default: None.

	edge_function (optional, function) – A function accepting two
TreeNode objects and
returning a dictionary of keywords to be given to pydot for creating
the edge object on the plot (the lines connecting halos). This can
be used to customize the appearance of the edges. See examples below.
Default: None.

	
size_field

	The field to determine the size of each circle.
Default: ‘mass’.

	Type:

	str

	
size_log

	Whether to scale circle sizes based on log of size field.
Default: True.

	Type:

	bool

	
min_mass

	The minimum halo mass to be included in the plot. If given
as a float, units are assumed to be Msun.
Default: None.

	Type:

	float or unyt_quantity

	
min_mass_ratio

	The minimum ratio between a halo’s mass and the mass of the
main halo to be included in the plot.
Default: None.

	Type:

	float

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> p = ytree.TreePlot(a[0])
>>> p.min_mass = 1e6 # Msun
>>> p.save()

>>> # customizing nodes
>>> import ytree
>>> def my_node(halo):
... label = f"{halo['uid']}"
... my_kwargs = {"label": label, "fontsize": 8, "shape": "square"}
... return my_kwargs
>>> a = ytree.load("tree_0_0_0.dat")
>>> p = ytree.TreePlot(a[0], node_function=my_node)
>>> p.save()

>>> # customizing edges
>>> import ytree
>>> def my_edge(ancestor, descendent):
... if descendent['mass'] < ancestor['mass']:
... color = 'blue'
... else:
... color = 'black'
... my_kwargs = {"color": color, "penwidth": 5}
... return my_kwargs
>>> a = ytree.load("tree_0_0_0.dat")
>>> p = ytree.TreePlot(a[0], edge_function=my_edge)
>>> p.save()

	
__init__(tree, dot_kwargs=None, node_function=None, edge_function=None)

	Initialize a TreePlot.

Methods

	__init__(tree[, dot_kwargs, node_function, …])

	Initialize a TreePlot.

	save([filename])

	Save the merger tree plot.

Attributes

	min_mass

	The minimum halo mass to be included in the plot.

	min_mass_ratio

	The minimum halo mass to main halo mass.

	size_field

	The field to determine the size of each circle.

	size_log

	Whether to scale circle sizes based on log of size field.

 ytree.visualization.tree_plot.TreePlot.save

ytree.visualization.tree_plot.TreePlot.save

	
TreePlot.save(filename=None)

	Save the merger tree plot.

	Parameters:

	filename (optional, str) – The output filename. If none given, the uid of the head
node is used.
Default: None.

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> p = ytree.TreePlot(a[0])
>>> p.save('tree.png')

 ytree.analysis.analysis_pipeline.AnalysisPipeline

ytree.analysis.analysis_pipeline.AnalysisPipeline

	
class ytree.analysis.analysis_pipeline.AnalysisPipeline(output_dir=None)

	Initialize an AnalysisPipeline.

An AnalysisPipeline allows one to create a workflow of analysis to be
performed on a node/halo in a tree. This is done by creating functions
that minimally accept a node as the first argument and providing these
to the AnalysisPipeline in the order they are meant to be run. This
makes it straightforward to organize an analysis workflow into a series
of distinct, reusable functions.

	Parameters:

	output_dir (optional, str) – Path to a directory into which any files will be saved. The
directory will be created if it does not already exist.

Examples

>>> import ytree
>>>
>>> def my_analysis(node):
... node["test_field"] = 2 * node["mass"]
>>>
>>> def minimum_mass(node, value):
... return node["mass"] > value
>>>
>>> def my_recipe(pipeline):
... pipeline.add_operation(my_analysis)
>>>
>>> def do_cleanup(node):
... print (f"End of analysis for {node}.")
>>>
>>> a = ytree.load("arbor/arbor.h5")
>>>
>>> ap = AnalysisPipeline()
>>> # don't analyze halos below 3e11 Msun
>>> ap.add_operation(minimum_mass, 3e11)
>>> ap.add_recipe(my_recipe)
>>> ap.add_recipe(do_cleanup, always_do=True)
>>>
>>> trees = list(a[:])
>>> for tree in trees:
... for node in tree["forest"]:
... ap.process_target(node)
>>>
>>> a.save_arbor(trees=trees)

	
__init__(output_dir=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__([output_dir])

	Initialize self.

	add_operation(function, *args[, always_do])

	Add an operation to the AnalysisPipeline.

	add_recipe(function, *args, **kwargs)

	Add a recipe to the AnalysisPipeline.

	process_target(target)

	Process a node through the AnalysisPipeline.

 ytree.analysis.analysis_pipeline.AnalysisPipeline.add_operation

ytree.analysis.analysis_pipeline.AnalysisPipeline.add_operation

	
AnalysisPipeline.add_operation(function, *args, always_do=False, **kwargs)

	Add an operation to the AnalysisPipeline.

An operation is a function that minimally takes in a target object
and performs some actions on or with it. This function may alter the
object’s state, attach attributes, write out data, etc. Operations
are used to create a pipeline of actions performed in sequence on a list
of objects, such as all halos in a merger tree. The function can,
optionally, return True or False to act as a filter, determining if the
rest of the pipeline should be carried out (if True) or if the pipeline
should stop and move on to the next object (if False).

	Parameters:

	
	function (callable) – The function to be called for each node/halo.

	*args (positional arguments) – Any additional positional arguments to be provided to the funciton.

	always_do (optional, bool) – If True, always perform this operation even if a prior filter has
returned False. This can be used to add house cleaning operations
that should always be run.
Default: False

	**kwargs (keyword arguments) – Any keyword arguments to be provided to the function.

 ytree.analysis.analysis_pipeline.AnalysisPipeline.add_recipe

ytree.analysis.analysis_pipeline.AnalysisPipeline.add_recipe

	
AnalysisPipeline.add_recipe(function, *args, **kwargs)

	Add a recipe to the AnalysisPipeline.

An recipe is a function that accepts an AnalysisPipeline and adds a
series of operations with calls to add_operation. This is a way of
creating a shortcut for a series of operations.

	Parameters:

	
	function (callable) – A function accepting an AnalysisPipeline object.

	*args (positional arguments) – Any additional positional arguments to be provided to the funciton.

	**kwargs (keyword arguments) – Any keyword arguments to be provided to the function.

Examples

>>> def print_field_value(node, field):
... print (f"Node {node} has {field} of {node[field]}.")
>>>
>>> def print_many_things(pipeline, fields):
... for field in fields:
... pipeline.add_operation(print_field_value, field)
>>>
>>> ap = ytree.AnalysisPipeline()
>>> ap.add_recipe(print_many_things, ["mass", "virial_radius"])

 ytree.analysis.analysis_pipeline.AnalysisPipeline.process_target

ytree.analysis.analysis_pipeline.AnalysisPipeline.process_target

	
AnalysisPipeline.process_target(target)

	Process a node through the AnalysisPipeline.

All operations added to the AnalysisPipeline will be run on the
provided target.

	Parameters:

	target (TreeNode) – The node on which to run the analysis pipeline.

 ytree.analysis.analysis_operators.AnalysisOperation

ytree.analysis.analysis_operators.AnalysisOperation

	
class ytree.analysis.analysis_operators.AnalysisOperation(function, *args, always_do=False, **kwargs)

	An analysis task performed by an AnalysisPipeline.

This is an internal class that facilitates keeping track of a
function, arguments, and keyword arguments that together represent a
single operation in a pipeline.

	Parameters:

	function (callable) – A function that minimally accepts a
TreeNode object. The
function may also accept additional positional and keyword arguments.

	
__init__(function, *args, always_do=False, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(function, *args[, always_do])

	Initialize self.

 ytree.utilities.parallel.parallel_trees

ytree.utilities.parallel.parallel_trees

	
ytree.utilities.parallel.parallel_trees(trees, save_every=None, filename=None, njobs=0, dynamic=False)

	Iterate over a list of trees in parallel.

Trees are divided up between the available processor groups. Analysis
field values can then be assigned to halos within the tree. The trees
will be saved either at the end of the loop or after a number of trees
given by the save_every keyword are completed.

This uses the yt
parallel_objects [http://yt-project.org/docs/dev/reference/api/yt.utilities.parallel_tools.parallel_analysis_interface.html#yt.utilities.parallel_tools.parallel_analysis_interface.parallel_objects]
function, which is parallelized with MPI underneath and so is suitable
for parallelism across compute nodes.

	Parameters:

	
	trees (list of TreeNode objects) – The trees to be iterated over in parallel.

	save_every (optional, int or False) – Number of trees to be completed before results are saved. This is
used to save intermediate results in case scripts need to be restarted.
If None, save will only occur after iterating over all trees. If False,
no saving will be done.
Default: None

	filename (optional, string) – The name of the new arbor to be saved. If None, the naming convention
will follow the filename keyword of the
save_arbor function.
Default: None

	njobs (optional, int) – The number of process groups for parallel iteration. Set to 0 to make
the same number of process groups as available processors. Hence,
each tree will be allocated to a single processor. Set to a number
less than the total number of processors to create groups with multiple
processors, which will allow for further parallelization within a tree.
For example, running with 8 processors and setting njobs to 4 will result
in 4 groups of 2 processors each.
Default: 0

	dynamic (optional, bool) – Set to False to divide iterations evenly among process groups. Set to
True to allocate iterations with a task queue. If True, the number of
processors available will be one fewer than the total as one will act
as the task queue server.
Default: False

Examples

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> a.add_analysis_field("test_field", default=-1, units="Msun")
>>> trees = list(a[:])
>>> for tree in ytree.parallel_trees(trees):
... for node in tree["forest"]:
... node["test_field"] = 2 * node["mass"] # some analysis

See also

parallel_tree_nodes, parallel_nodes

 ytree.utilities.parallel.parallel_tree_nodes

ytree.utilities.parallel.parallel_tree_nodes

	
ytree.utilities.parallel.parallel_tree_nodes(tree, group='forest', njobs=0, dynamic=False)

	Iterate over nodes in a single tree in parallel.

Nodes are divided up between the available processor groups. Analysis
field values can then be assigned to each node (halo).

Note, unlike the parallel_trees and parallel_nodes function, no saving
is performed internally. Results saving with the
save_arbor must be done
manually.

This uses the yt
parallel_objects [http://yt-project.org/docs/dev/reference/api/yt.utilities.parallel_tools.parallel_analysis_interface.html#yt.utilities.parallel_tools.parallel_analysis_interface.parallel_objects]
function, which is parallelized with MPI underneath and so is suitable
for parallelism across compute nodes.

	Parameters:

	
	tree (TreeNode) – The tree whose nodes will be iterated over.

	group (optional, str ("forest", "tree", or "prog")) – Determines the nodes to be iterated over in the tree: “forest” for
all nodes in the forest, “tree” for all nodes in the tree, or “prog”
for all nodes in the line of main progenitors.
Default: “forest”

	njobs (optional, int) – The number of process groups for parallel iteration. Set to 0 to make
the same number of process groups as available processors. Hence,
each node will be allocated to a single processor. Set to a number
less than the total number of processors to create groups with multiple
processors, which will allow for further parallelization. For example,
running with 8 processors and setting njobs to 4 will result in 4
groups of 2 processors each.
Default: 0

	dynamic (optional, bool) – Set to False to divide iterations evenly among process groups. Set to
True to allocate iterations with a task queue. If True, the number of
processors available will be one fewer than the total as one will act
as the task queue server.
Default: False

Examples

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> a.add_analysis_field("test_field", default=-1, units="Msun")
>>> trees = list(a[:])
>>> for tree in trees:
... for node in ytree.parallel_tree_nodes(tree):
... node["test_field"] = 2 * node["mass"] # some analysis

See also

parallel_trees, parallel_nodes

 ytree.utilities.parallel.parallel_nodes

ytree.utilities.parallel.parallel_nodes

	
ytree.utilities.parallel.parallel_nodes(trees, group='forest', save_every=None, filename=None, njobs=None, dynamic=None)

	Iterate over all nodes in a list of trees in parallel.

Both trees and/or nodes within a tree are divided up between available
process groups using multi-level parallelism. Analysis field values can
then be assigned to all nodes (halos). Trees will be saved either at the
end of the loop over all trees or after a number of trees given by the
save_every keyword are completed.

This uses the yt
parallel_objects [http://yt-project.org/docs/dev/reference/api/yt.utilities.parallel_tools.parallel_analysis_interface.html#yt.utilities.parallel_tools.parallel_analysis_interface.parallel_objects]
function, which is parallelized with MPI underneath and so is suitable
for parallelism across compute nodes.

	Parameters:

	
	trees (list of TreeNode objects) – The trees to be iterated over in parallel.

	group (optional, str ("forest", "tree", or "prog")) – Determines the nodes to be iterated over in the tree: “forest” for
all nodes in the forest, “tree” for all nodes in the tree, or “prog”
for all nodes in the line of main progenitors.
Default: “forest”

	save_every (optional, int or False) – Number of trees to be completed before results are saved. This is
used to save intermediate results in case scripts need to be restarted.
If None, save will only occur after iterating over all trees. If False,
no saving will be done.
Default: None

	filename (optional, string) – The name of the new arbor to be saved. If None, the naming convention
will follow the filename keyword of the
save_arbor function.
Default: None

	njobs (optional, tuple of ints) – The number of process groups for parallel iteration over trees and
nodes within each tree. The first value sets behavior for iteration
over trees and the second for iteration over nodes in a tree. For
example, set to (1, 0) to parallelize only over nodes in a tree and
(0, 1) to parallelize only over trees. For multi-level parallelism
set the first value to a number less than the total number of
processors and the second to 0. For example, if running with 8
processors, set njobs to (2, 0) to iterate over each tree with a
group of 4 processors. Within each tree, each of the 4 processors
in the group will work on a single node. If set to None, njobs will
be set to (0, 1) if there are most trees than processors (tree
parallel) and (1, 0) otherwise (node parallel).
Default: None

	dynamic (optional, tuples of bools) – Toggles task queue on/off for parallelism over trees (first value)
and nodes within a tree (second). Set to a value False to divide
iterations evenly among process groups. Set to True to allocate
iterations with a task queue. If True, the number of
processors available will be one fewer than the total as one will
act as the task queue server. Yes, this can be set to (True, True).
Try it.
Default: (False, False)

Examples

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> a.add_analysis_field("test_field", default=-1, units="Msun")
>>> trees = list(a[:])
>>> for node in ytree.parallel_nodes(trees):
... node["test_field"] = 2 * node["mass"] # some analysis

See also

parallel_trees, parallel_tree_nodes

 ytree.data_structures.arbor.Arbor

ytree.data_structures.arbor.Arbor

	
class ytree.data_structures.arbor.Arbor(filename)

	Base class for all Arbor classes.

Loads a merger tree output file or a series of halo catalogs
and create trees, stored in an array in
trees.
Arbors can be saved in a universal format with
save_arbor. Also, provide some
convenience functions for creating unyt_arrays and unyt_quantities and
a cosmology calculator.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.data_structures.arbor.SegmentedArbor

ytree.data_structures.arbor.SegmentedArbor

	
class ytree.data_structures.arbor.SegmentedArbor(filename)

	Arbor subclass for multi-file datasets where an entire merger tree
is contained within a file (i.e., no overlap). This permits the
definition of a useful _node_io_loop_prepare function.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.data_structures.arbor.CatalogArbor

ytree.data_structures.arbor.CatalogArbor

	
class ytree.data_structures.arbor.CatalogArbor(filename)

	Base class for Arbors created from a series of halo catalog
files where the descendent ID for each halo has been
pre-determined.

Unlike formats where tree information is stored in single file,
halos are scattered about multiple catalog files. This requires
us to store the root TreeNode objects and their full assemblies.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.data_structures.detection.Detector

ytree.data_structures.detection.Detector

	
class ytree.data_structures.detection.Detector

	Base class for detecting field dependencies and testing operations.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

Methods

	clear()

	

	copy()

	

	fromkeys

	Create a new dictionary with keys from iterable and values set to value.

	get

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	setdefault

	Insert key with a value of default if key is not in the dictionary.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	default_factory

	Factory for default value called by __missing__().

 ytree.data_structures.detection.FieldDetector

ytree.data_structures.detection.FieldDetector

	
class ytree.data_structures.detection.FieldDetector(arbor, name=None)

	A fake field data container used to calculate dependencies.

	
__init__(arbor, name=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, name])

	Initialize self.

	clear()

	

	copy()

	

	fromkeys

	Create a new dictionary with keys from iterable and values set to value.

	get

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	setdefault

	Insert key with a value of default if key is not in the dictionary.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	default_factory

	Factory for default value called by __missing__().

 ytree.data_structures.detection.SelectionDetector

ytree.data_structures.detection.SelectionDetector

	
class ytree.data_structures.detection.SelectionDetector(arbor)

	A TreeNode-like object to test select_halos criteria.

	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	clear()

	

	copy()

	

	fromkeys

	Create a new dictionary with keys from iterable and values set to value.

	get

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	setdefault

	Insert key with a value of default if key is not in the dictionary.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	default_factory

	Factory for default value called by __missing__().

 ytree.data_structures.fields.FieldInfoContainer

ytree.data_structures.fields.FieldInfoContainer

	
class ytree.data_structures.fields.FieldInfoContainer(arbor)

	A container for information about fields.

	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	add_alias_field(alias, field[, units, force_add])

	Add an alias field.

	add_analysis_field(name, units[, dtype, default])

	Add an analysis field.

	add_derived_field(name, function[, units, …])

	Add a derived field.

	add_vector_field(fieldname)

	Add vector and magnitude fields for a field with x/y/z components.

	clear()

	

	copy()

	

	fromkeys

	Create a new dictionary with keys from iterable and values set to value.

	get

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache, …])

	Divide fields into those to be read and those to generate.

	setdefault

	Insert key with a value of default if key is not in the dictionary.

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	setup_vector_fields()

	Add vector and magnitude fields.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	data_types

	

	known_fields

	

	vector_fields

	

 ytree.data_structures.fields.FieldContainer

ytree.data_structures.fields.FieldContainer

	
class ytree.data_structures.fields.FieldContainer(arbor)

	A container for field data.

	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	clear()

	

	copy()

	

	fromkeys

	Create a new dictionary with keys from iterable and values set to value.

	get

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	setdefault

	Insert key with a value of default if key is not in the dictionary.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

 ytree.data_structures.io.FieldIO

ytree.data_structures.io.FieldIO

	
class ytree.data_structures.io.FieldIO(arbor, default_dtype=<class 'numpy.float64'>)

	Base class for FieldIO classes.

This object is resposible for field i/o for an Arbor.

	
__init__(arbor, default_dtype=<class 'numpy.float64'>)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, default_dtype])

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

 ytree.data_structures.io.TreeFieldIO

ytree.data_structures.io.TreeFieldIO

	
class ytree.data_structures.io.TreeFieldIO(arbor, default_dtype=<class 'numpy.float64'>)

	IO class for getting fields for a tree.

	
__init__(arbor, default_dtype=<class 'numpy.float64'>)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, default_dtype])

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

 ytree.data_structures.io.DefaultRootFieldIO

ytree.data_structures.io.DefaultRootFieldIO

	
class ytree.data_structures.io.DefaultRootFieldIO(arbor, default_dtype=<class 'numpy.float64'>)

	Class for getting root fields from arbors that have no
specialized storage for root fields.

	
__init__(arbor, default_dtype=<class 'numpy.float64'>)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, default_dtype])

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

 ytree.data_structures.io.DataFile

ytree.data_structures.io.DataFile

	
class ytree.data_structures.io.DataFile(filename)

	Base class for data files.

This class allows us keep files open during i/o heavy operations
and to keep things like caches of fields.

	
__init__(filename)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename)

	Initialize self.

	close()

	

	open()

	

 ytree.data_structures.io.CatalogDataFile

ytree.data_structures.io.CatalogDataFile

	
class ytree.data_structures.io.CatalogDataFile(filename, arbor)

	Base class for halo catalog files.

	
__init__(filename, arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename, arbor)

	Initialize self.

	close()

	

	open()

	

 ytree.frontends.ahf.arbor.AHFArbor

ytree.frontends.ahf.arbor.AHFArbor

	
class ytree.frontends.ahf.arbor.AHFArbor(filename, log_filename=None, hubble_constant=1.0, box_size=None, omega_matter=None, omega_lambda=None)

	Arbor for Amiga Halo Finder data.

	
__init__(filename, log_filename=None, hubble_constant=1.0, box_size=None, omega_matter=None, omega_lambda=None)

	Initialize an Arbor given an input file.

Methods

	__init__(filename[, log_filename, …])

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.frontends.consistent_trees.arbor.ConsistentTreesArbor

ytree.frontends.consistent_trees.arbor.ConsistentTreesArbor

	
class ytree.frontends.consistent_trees.arbor.ConsistentTreesArbor(filename)

	Arbors loaded from consistent-trees tree_*.dat files.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.frontends.consistent_trees.arbor.ConsistentTreesGroupArbor

ytree.frontends.consistent_trees.arbor.ConsistentTreesGroupArbor

	
class ytree.frontends.consistent_trees.arbor.ConsistentTreesGroupArbor(filename)

	Arbors loaded from consistent-trees locations.dat files.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.frontends.consistent_trees.arbor.ConsistentTreesHlistArbor

ytree.frontends.consistent_trees.arbor.ConsistentTreesHlistArbor

	
class ytree.frontends.consistent_trees.arbor.ConsistentTreesHlistArbor(filename)

	Class for Arbors created from consistent-trees hlist_*.list files.

This is a hybrid type with multiple catalog files like the rockstar
frontend, but with headers structured like consistent-trees.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.frontends.consistent_trees_hdf5.arbor.ConsistentTreesHDF5Arbor

ytree.frontends.consistent_trees_hdf5.arbor.ConsistentTreesHDF5Arbor

	
class ytree.frontends.consistent_trees_hdf5.arbor.ConsistentTreesHDF5Arbor(filename, access='tree')

	Arbors loaded from consistent-trees data converted into HDF5.

	
__init__(filename, access='tree')

	Initialize an Arbor given an input file.

Methods

	__init__(filename[, access])

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.frontends.lhalotree.arbor.LHaloTreeArbor

ytree.frontends.lhalotree.arbor.LHaloTreeArbor

	
class ytree.frontends.lhalotree.arbor.LHaloTreeArbor(*args, **kwargs)

	Arbors for LHaloTree data.

	
__init__(*args, **kwargs)

	Added reader class to allow fast access of header info.

Methods

	__init__(*args, **kwargs)

	Added reader class to allow fast access of header info.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.frontends.lhalotree_hdf5.arbor.LHaloTreeHDF5Arbor

ytree.frontends.lhalotree_hdf5.arbor.LHaloTreeHDF5Arbor

	
class ytree.frontends.lhalotree_hdf5.arbor.LHaloTreeHDF5Arbor(filename, hubble_constant=1.0, box_size=None, omega_matter=None, omega_lambda=None)

	Arbors loaded from consistent-trees data converted into HDF5.

	
__init__(filename, hubble_constant=1.0, box_size=None, omega_matter=None, omega_lambda=None)

	Initialize an Arbor given an input file.

Methods

	__init__(filename[, hubble_constant, …])

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.frontends.moria.arbor.MoriaArbor

ytree.frontends.moria.arbor.MoriaArbor

	
class ytree.frontends.moria.arbor.MoriaArbor(filename)

	Arbors from Moria merger trees.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.frontends.rockstar.arbor.RockstarArbor

ytree.frontends.rockstar.arbor.RockstarArbor

	
class ytree.frontends.rockstar.arbor.RockstarArbor(filename)

	Class for Arbors created from Rockstar out_*.list files.
Use only descendent IDs to determine tree relationship.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.frontends.treefarm.arbor.TreeFarmArbor

ytree.frontends.treefarm.arbor.TreeFarmArbor

	
class ytree.frontends.treefarm.arbor.TreeFarmArbor(filename)

	Class for Arbors created with TreeFarm.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(*args, **kwargs)

	

	get_yt_selection(*args, **kwargs)

	

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	

 ytree.frontends.ytree.arbor.YTreeArbor

ytree.frontends.ytree.arbor.YTreeArbor

	
class ytree.frontends.ytree.arbor.YTreeArbor(filename)

	Class for Arbors created from the
save_arbor
or save_tree functions.

	
__init__(filename)

	Initialize an Arbor given an input file.

Methods

	__init__(filename)

	Initialize an Arbor given an input file.

	add_alias_field(alias, field[, units, force_add])

	Add a field as an alias to another field.

	add_analysis_field(name, units[, dtype, default])

	Add an empty field to be filled by analysis operations.

	add_derived_field(name, function[, units, …])

	Add a field that is a function of other fields.

	add_vector_field(name)

	Add vector fields for a set of x,y,z component fields.

	get_nodes_from_selection(container)

	Generate TreeNodes from a yt data container.

	get_yt_selection([above, below, equal, …])

	Get a selection of halos meeting given criteria.

	is_grown(tree_node)

	Return True if a tree has been fully assembled, i.e., the hierarchy of ancestor tree nodes has been built.

	is_setup(tree_node)

	Return True if arrays of uids and descendent uids have been read in.

	query(key)

	If given a string, return an array of field values for the roots of all trees.

	reset_node(tree_node)

	Reset all data structures for a single node.

	save_arbor(**kwargs)

	Save the arbor to a file.

	select_halos(criteria[, trees, select_from, …])

	Select halos from the arbor based on a set of criteria given as a string.

	set_selector(selector, *args, **kwargs)

	Sets the tree node selector to be used.

Attributes

	arr

	Create a unyt_array using the Arbor’s unit registry.

	box_size

	The simulation box size.

	field_info

	A dictionary containing information for each available field.

	hubble_constant

	Value of the Hubble parameter.

	is_planted

	Determine if trees have been planted.

	omega_lambda

	

	omega_matter

	

	omega_radiation

	

	quan

	Create a unyt_quantity using the Arbor’s unit registry.

	size

	Return total number of trees.

	unit_registry

	Unit system registry.

	ytds

	Load as a yt dataset.

 ytree.frontends.ahf.fields.AHFFieldInfo

ytree.frontends.ahf.fields.AHFFieldInfo

	
class ytree.frontends.ahf.fields.AHFFieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	add_alias_field(alias, field[, units, force_add])

	Add an alias field.

	add_analysis_field(name, units[, dtype, default])

	Add an analysis field.

	add_derived_field(name, function[, units, …])

	Add a derived field.

	add_vector_field(fieldname)

	Add vector and magnitude fields for a field with x/y/z components.

	clear()

	

	copy()

	

	fromkeys

	Create a new dictionary with keys from iterable and values set to value.

	get

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache, …])

	Divide fields into those to be read and those to generate.

	setdefault

	Insert key with a value of default if key is not in the dictionary.

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	setup_vector_fields()

	Add vector and magnitude fields.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	data_types

	

	known_fields

	

	vector_fields

	

 ytree.frontends.consistent_trees.fields.ConsistentTreesFieldInfo

ytree.frontends.consistent_trees.fields.ConsistentTreesFieldInfo

	
class ytree.frontends.consistent_trees.fields.ConsistentTreesFieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	add_alias_field(alias, field[, units, force_add])

	Add an alias field.

	add_analysis_field(name, units[, dtype, default])

	Add an analysis field.

	add_derived_field(name, function[, units, …])

	Add a derived field.

	add_vector_field(fieldname)

	Add vector and magnitude fields for a field with x/y/z components.

	clear()

	

	copy()

	

	fromkeys

	Create a new dictionary with keys from iterable and values set to value.

	get

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache, …])

	Divide fields into those to be read and those to generate.

	setdefault

	Insert key with a value of default if key is not in the dictionary.

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	setup_vector_fields()

	Add vector and magnitude fields.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	data_types

	

	known_fields

	

	vector_fields

	

 ytree.frontends.consistent_trees_hdf5.fields.ConsistentTreesHDF5FieldInfo

ytree.frontends.consistent_trees_hdf5.fields.ConsistentTreesHDF5FieldInfo

	
class ytree.frontends.consistent_trees_hdf5.fields.ConsistentTreesHDF5FieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	add_alias_field(alias, field[, units, force_add])

	Add an alias field.

	add_analysis_field(name, units[, dtype, default])

	Add an analysis field.

	add_derived_field(name, function[, units, …])

	Add a derived field.

	add_vector_field(fieldname)

	Add vector and magnitude fields for a field with x/y/z components.

	clear()

	

	copy()

	

	fromkeys

	Create a new dictionary with keys from iterable and values set to value.

	get

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache, …])

	Divide fields into those to be read and those to generate.

	setdefault

	Insert key with a value of default if key is not in the dictionary.

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	setup_vector_fields()

	Add vector and magnitude fields.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	data_types

	

	known_fields

	

	vector_fields

	

 ytree.frontends.lhalotree.fields.LHaloTreeFieldInfo

ytree.frontends.lhalotree.fields.LHaloTreeFieldInfo

	
class ytree.frontends.lhalotree.fields.LHaloTreeFieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	add_alias_field(alias, field[, units, force_add])

	Add an alias field.

	add_analysis_field(name, units[, dtype, default])

	Add an analysis field.

	add_derived_field(name, function[, units, …])

	Add a derived field.

	add_vector_field(fieldname)

	Add vector and magnitude fields for a field with x/y/z components.

	clear()

	

	copy()

	

	fromkeys

	Create a new dictionary with keys from iterable and values set to value.

	get

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache, …])

	Divide fields into those to be read and those to generate.

	setdefault

	Insert key with a value of default if key is not in the dictionary.

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	setup_vector_fields()

	Add vector and magnitude fields.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	data_types

	

	known_fields

	

	vector_fields

	

 ytree.frontends.lhalotree_hdf5.fields.LHaloTreeHDF5FieldInfo

ytree.frontends.lhalotree_hdf5.fields.LHaloTreeHDF5FieldInfo

	
class ytree.frontends.lhalotree_hdf5.fields.LHaloTreeHDF5FieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	add_alias_field(alias, field[, units, force_add])

	Add an alias field.

	add_analysis_field(name, units[, dtype, default])

	Add an analysis field.

	add_derived_field(name, function[, units, …])

	Add a derived field.

	add_vector_field(fieldname)

	Add vector and magnitude fields for a field with x/y/z components.

	clear()

	

	copy()

	

	fromkeys

	Create a new dictionary with keys from iterable and values set to value.

	get

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache, …])

	Divide fields into those to be read and those to generate.

	setdefault

	Insert key with a value of default if key is not in the dictionary.

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for all <fieldname>_<number> fields as well.

	setup_vector_fields()

	Add vector and magnitude fields.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	data_types

	

	known_fields

	

	vector_fields

	

 ytree.frontends.moria.fields.MoriaFieldInfo

ytree.frontends.moria.fields.MoriaFieldInfo

	
class ytree.frontends.moria.fields.MoriaFieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	add_alias_field(alias, field[, units, force_add])

	Add an alias field.

	add_analysis_field(name, units[, dtype, default])

	Add an analysis field.

	add_derived_field(name, function[, units, …])

	Add a derived field.

	add_vector_field(fieldname)

	Add vector and magnitude fields for a field with x/y/z components.

	clear()

	

	copy()

	

	fromkeys

	Create a new dictionary with keys from iterable and values set to value.

	get

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache, …])

	Divide fields into those to be read and those to generate.

	setdefault

	Insert key with a value of default if key is not in the dictionary.

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for all <fieldname>_<number> fields as well.

	setup_vector_fields()

	Add vector and magnitude fields.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	data_types

	

	known_fields

	

	vector_fields

	

 ytree.frontends.rockstar.fields.RockstarFieldInfo

ytree.frontends.rockstar.fields.RockstarFieldInfo

	
class ytree.frontends.rockstar.fields.RockstarFieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	add_alias_field(alias, field[, units, force_add])

	Add an alias field.

	add_analysis_field(name, units[, dtype, default])

	Add an analysis field.

	add_derived_field(name, function[, units, …])

	Add a derived field.

	add_vector_field(fieldname)

	Add vector and magnitude fields for a field with x/y/z components.

	clear()

	

	copy()

	

	fromkeys

	Create a new dictionary with keys from iterable and values set to value.

	get

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache, …])

	Divide fields into those to be read and those to generate.

	setdefault

	Insert key with a value of default if key is not in the dictionary.

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	setup_vector_fields()

	Add vector and magnitude fields.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	data_types

	

	known_fields

	

	vector_fields

	

 ytree.frontends.treefarm.fields.TreeFarmFieldInfo

ytree.frontends.treefarm.fields.TreeFarmFieldInfo

	
class ytree.frontends.treefarm.fields.TreeFarmFieldInfo(arbor)

	
	
__init__(arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor)

	Initialize self.

	add_alias_field(alias, field[, units, force_add])

	Add an alias field.

	add_analysis_field(name, units[, dtype, default])

	Add an analysis field.

	add_derived_field(name, function[, units, …])

	Add a derived field.

	add_vector_field(fieldname)

	Add vector and magnitude fields for a field with x/y/z components.

	clear()

	

	copy()

	

	fromkeys

	Create a new dictionary with keys from iterable and values set to value.

	get

	Return the value for key if key is in the dictionary, else default.

	items()

	

	keys()

	

	pop(k[,d])

	If key is not found, d is returned if given, otherwise KeyError is raised

	popitem()

	2-tuple; but raise KeyError if D is empty.

	resolve_field_dependencies(fields[, fcache, …])

	Divide fields into those to be read and those to generate.

	setdefault

	Insert key with a value of default if key is not in the dictionary.

	setup_aliases()

	Add aliases defined in the alias_fields tuple for each frontend.

	setup_derived_fields()

	Add stock derived fields.

	setup_known_fields()

	Add units for fields on disk as defined in the known_fields tuple.

	setup_vector_fields()

	Add vector and magnitude fields.

	update([E,]**F)

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

	values()

	

Attributes

	alias_fields

	

	data_types

	

	known_fields

	

	vector_fields

	

 ytree.frontends.consistent_trees.io.ConsistentTreesTreeFieldIO

ytree.frontends.consistent_trees.io.ConsistentTreesTreeFieldIO

	
class ytree.frontends.consistent_trees.io.ConsistentTreesTreeFieldIO(arbor, default_dtype=<class 'numpy.float64'>)

	
	
__init__(arbor, default_dtype=<class 'numpy.float64'>)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, default_dtype])

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

 ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5TreeFieldIO

ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5TreeFieldIO

	
class ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5TreeFieldIO(arbor, default_dtype=<class 'numpy.float64'>)

	
	
__init__(arbor, default_dtype=<class 'numpy.float64'>)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, default_dtype])

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

 ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5RootFieldIO

ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5RootFieldIO

	
class ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5RootFieldIO(arbor, default_dtype=<class 'numpy.float64'>)

	Read in fields for first node in all trees/forest.

This function is optimized for the struct of arrays layout.
It will work for array of structs layout, but field access
will be 1 to 2 orders of magnitude slower.

	
__init__(arbor, default_dtype=<class 'numpy.float64'>)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, default_dtype])

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

 ytree.frontends.lhalotree.io.LHaloTreeTreeFieldIO

ytree.frontends.lhalotree.io.LHaloTreeTreeFieldIO

	
class ytree.frontends.lhalotree.io.LHaloTreeTreeFieldIO(arbor, default_dtype=<class 'numpy.float64'>)

	
	
__init__(arbor, default_dtype=<class 'numpy.float64'>)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, default_dtype])

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

 ytree.frontends.lhalotree.io.LHaloTreeRootFieldIO

ytree.frontends.lhalotree.io.LHaloTreeRootFieldIO

	
class ytree.frontends.lhalotree.io.LHaloTreeRootFieldIO(arbor, default_dtype=<class 'numpy.float64'>)

	
	
__init__(arbor, default_dtype=<class 'numpy.float64'>)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, default_dtype])

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

 ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5TreeFieldIO

ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5TreeFieldIO

	
class ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5TreeFieldIO(arbor, default_dtype=<class 'numpy.float64'>)

	
	
__init__(arbor, default_dtype=<class 'numpy.float64'>)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, default_dtype])

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

 ytree.frontends.moria.io.MoriaTreeFieldIO

ytree.frontends.moria.io.MoriaTreeFieldIO

	
class ytree.frontends.moria.io.MoriaTreeFieldIO(arbor, default_dtype=<class 'numpy.float64'>)

	
	
__init__(arbor, default_dtype=<class 'numpy.float64'>)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, default_dtype])

	Initialize self.

	get_fields(data_object[, fields])

	Call _setup_tree if asking for desc_uid so we can correct it.

 ytree.frontends.ytree.io.YTreeTreeFieldIO

ytree.frontends.ytree.io.YTreeTreeFieldIO

	
class ytree.frontends.ytree.io.YTreeTreeFieldIO(arbor, default_dtype=<class 'numpy.float64'>)

	
	
__init__(arbor, default_dtype=<class 'numpy.float64'>)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, default_dtype])

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

 ytree.frontends.ytree.io.YTreeRootFieldIO

ytree.frontends.ytree.io.YTreeRootFieldIO

	
class ytree.frontends.ytree.io.YTreeRootFieldIO(arbor, default_dtype=<class 'numpy.float64'>)

	
	
__init__(arbor, default_dtype=<class 'numpy.float64'>)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(arbor[, default_dtype])

	Initialize self.

	get_fields(data_object[, fields])

	Load field data for a data object into storage structures.

 ytree.frontends.ahf.io.AHFDataFile

ytree.frontends.ahf.io.AHFDataFile

	
class ytree.frontends.ahf.io.AHFDataFile(filename, arbor)

	
	
__init__(filename, arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename, arbor)

	Initialize self.

	close()

	

	open()

	

Attributes

	links

	

 ytree.frontends.consistent_trees.io.ConsistentTreesDataFile

ytree.frontends.consistent_trees.io.ConsistentTreesDataFile

	
class ytree.frontends.consistent_trees.io.ConsistentTreesDataFile(filename)

	
	
__init__(filename)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename)

	Initialize self.

	close()

	

	open()

	

 ytree.frontends.consistent_trees.io.ConsistentTreesHlistDataFile

ytree.frontends.consistent_trees.io.ConsistentTreesHlistDataFile

	
class ytree.frontends.consistent_trees.io.ConsistentTreesHlistDataFile(filename, arbor)

	
	
__init__(filename, arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename, arbor)

	Initialize self.

	close()

	

	open()

	

 ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5DataFile

ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5DataFile

	
class ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5DataFile(filename, linkname)

	
	
__init__(filename, linkname)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename, linkname)

	Initialize self.

	close()

	

	open()

	

 ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5DataFile

ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5DataFile

	
class ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5DataFile(filename, linkname)

	
	
__init__(filename, linkname)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename, linkname)

	Initialize self.

	close()

	

	open()

	

 ytree.frontends.moria.io.MoriaDataFile

ytree.frontends.moria.io.MoriaDataFile

	
class ytree.frontends.moria.io.MoriaDataFile(filename)

	
	
__init__(filename)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename)

	Initialize self.

	close()

	

	open()

	

	read_data(field, index)

	

Attributes

	fh

	

	field_cache

	

	full_read

	

 ytree.frontends.rockstar.io.RockstarDataFile

ytree.frontends.rockstar.io.RockstarDataFile

	
class ytree.frontends.rockstar.io.RockstarDataFile(filename, arbor)

	
	
__init__(filename, arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename, arbor)

	Initialize self.

	close()

	

	open()

	

 ytree.frontends.treefarm.io.TreeFarmDataFile

ytree.frontends.treefarm.io.TreeFarmDataFile

	
class ytree.frontends.treefarm.io.TreeFarmDataFile(filename, arbor)

	
	
__init__(filename, arbor)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename, arbor)

	Initialize self.

	close()

	

	open()

	

 ytree.frontends.ytree.io.YTreeDataFile

ytree.frontends.ytree.io.YTreeDataFile

	
class ytree.frontends.ytree.io.YTreeDataFile(filename)

	
	
__init__(filename)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(filename)

	Initialize self.

	close()

	

	open()

	

 ChangeLog

ChangeLog

This is a log of changes to ytree over its release history.

Contributors

The CREDITS file [https://github.com/ytree-project/ytree/blob/main/CREDITS]
contains the most up-to-date list of everyone who has contributed to the
ytree source code.

Version 3.1.2

Release date: March 11, 2022

Minor Enhancements

	Add always_do option to AnalysisPipeline operations.
(PR #129 [https://github.com/ytree-project/ytree/pull/129])

Bugfixes

	Make sure to refresh vector analysis fields after setting values.
(PR #127 [https://github.com/ytree-project/ytree/pull/127])

	Fix analysis pipeline operation filtering.
(PR #129 [https://github.com/ytree-project/ytree/pull/129])

	Get filename from correct part of line in consistent-trees format.
(PR #131 [https://github.com/ytree-project/ytree/pull/131])

Infrastructure Updates

	Officially support and start testing Python 3.10.
(PR #128 [https://github.com/ytree-project/ytree/pull/128])

Version 3.1.1

Release date: February 3, 2022

Bugfixes

	Allow parallel_trees to work with non-root trees.
(PR #123 [https://github.com/ytree-project/ytree/pull/123])

	Use smarter regexes to get AHF naming scheme.
(PR #118 [https://github.com/ytree-project/ytree/pull/118])

	Add return value to comply with yt.
(PR #121 [https://github.com/ytree-project/ytree/pull/121])

Infrastructure Updates

	Implement _apply_units method.
(PR #122 [https://github.com/ytree-project/ytree/pull/122])

	Enable parallelism on circleci.
(PR #120 [https://github.com/ytree-project/ytree/pull/120])

	Create pypi upload action.
(PR #124 [https://github.com/ytree-project/ytree/pull/124])

Version 3.1

Release date: August 30, 2021

New Featues

	Add AnalysisPipeline
(PR #113 [https://github.com/ytree-project/ytree/pull/113])

	Add Parallel Iterators
(PR #112 [https://github.com/ytree-project/ytree/pull/112])

Version 3.0

Release date: August 3, 2021

New Featues

	Halo selection and generation with yt data objects
(PR #82 [https://github.com/ytree-project/ytree/pull/82])

	Add frontends for consistent-trees hlist and locations.dat files
(PR #48 [https://github.com/ytree-project/ytree/pull/48])

	Add consistent-trees HDF5 frontend
(PR #53 [https://github.com/ytree-project/ytree/pull/53])

	Add LHaloTree_hdf5 frontend
(PR #81 [https://github.com/ytree-project/ytree/pull/81])

	Add TreeFrog frontend
(PR #103 [https://github.com/ytree-project/ytree/pull/103],
#95 [https://github.com/ytree-project/ytree/pull/95],
#88 [https://github.com/ytree-project/ytree/pull/88])

	Add Moria frontend
(PR #84 [https://github.com/ytree-project/ytree/pull/84])

	Add get_node and get_leaf_nodes functions
(PR #80 [https://github.com/ytree-project/ytree/pull/80])

	Add get_root_nodes function
(PR #91 [https://github.com/ytree-project/ytree/pull/91])

	Add add_vector_field function
(PR #71 [https://github.com/ytree-project/ytree/pull/71])

	Add plot customization
(PR #49 [https://github.com/ytree-project/ytree/pull/49])

Enhancements

	All functions returning TreeNodes now return generators for a
significant speed and memory usage improvement.
(PR #104 [https://github.com/ytree-project/ytree/pull/104],
#64 [https://github.com/ytree-project/ytree/pull/64],
#61 [https://github.com/ytree-project/ytree/pull/61])

	Speed and usability improvements to select_halos function
(PR #83 [https://github.com/ytree-project/ytree/pull/83],
#72 [https://github.com/ytree-project/ytree/pull/72])

	Add parallel analysis docs
(PR #106 [https://github.com/ytree-project/ytree/pull/106])

	Make field_data an public facing attribute.
(PR #105 [https://github.com/ytree-project/ytree/pull/105])

	Improved sorting for node_io_loop in ctrees_group and ctrees_hdf5
(PR #87 [https://github.com/ytree-project/ytree/pull/87])

	Relax requirements on cosmological parameters and add load options
for AHF frontend
(PR #76 [https://github.com/ytree-project/ytree/pull/76])

	Speed and usability updates to save_arbor function
(PR #68 [https://github.com/ytree-project/ytree/pull/68],
#58 [https://github.com/ytree-project/ytree/pull/58])

	Various infrastructure updates for newer versions of Python and
dependencies
(PR #92 [https://github.com/ytree-project/ytree/pull/92],
#78 [https://github.com/ytree-project/ytree/pull/78],
#75 [https://github.com/ytree-project/ytree/pull/75],
#60 [https://github.com/ytree-project/ytree/pull/60],
#54 [https://github.com/ytree-project/ytree/pull/54],
#45 [https://github.com/ytree-project/ytree/pull/45])

	Update frontend development docs
(PR #69 [https://github.com/ytree-project/ytree/pull/69])

	CI updates
(PR #101 [https://github.com/ytree-project/ytree/pull/101],
#96 [https://github.com/ytree-project/ytree/pull/96],
#94 [https://github.com/ytree-project/ytree/pull/94],
#93 [https://github.com/ytree-project/ytree/pull/93],
#86 [https://github.com/ytree-project/ytree/pull/86],
#79 [https://github.com/ytree-project/ytree/pull/79],
#74 [https://github.com/ytree-project/ytree/pull/74],
#73 [https://github.com/ytree-project/ytree/pull/73])
#63 [https://github.com/ytree-project/ytree/pull/63],
#55 [https://github.com/ytree-project/ytree/pull/55],
#51 [https://github.com/ytree-project/ytree/pull/51],
#50 [https://github.com/ytree-project/ytree/pull/50],
#43 [https://github.com/ytree-project/ytree/pull/43],
#42 [https://github.com/ytree-project/ytree/pull/42])

	Remove support for ytree-1.x outputs
(PR #62 [https://github.com/ytree-project/ytree/pull/62])

	Drop support for python 3.5
(PR #59 [https://github.com/ytree-project/ytree/pull/59])

	Drop support for Python 2
(PR #41 [https://github.com/ytree-project/ytree/pull/41])

Bugfixes

	Use file sizes of loaded arbor when only saving analysis fields.
(PR #100 [https://github.com/ytree-project/ytree/pull/100])

	Use regex for more robust filename check.
(PR #77 [https://github.com/ytree-project/ytree/pull/77],
#47 [https://github.com/ytree-project/ytree/pull/47])

	Fix issue with saving full arbor
(PR #70 [https://github.com/ytree-project/ytree/pull/70])

	Check if attr is bytes or string.
(PR #57 [https://github.com/ytree-project/ytree/pull/57])

	Fix arg in error message.
(PR #56 [https://github.com/ytree-project/ytree/pull/56])

	Account for empty ctrees files in data files list
(PR #52 [https://github.com/ytree-project/ytree/pull/52])

Version 2.3

Release date: December 17, 2019

This release marks the acceptance of the ytree paper [https://github.com/openjournals/joss-reviews/issues/1881] in
JOSS [https://joss.theoj.org/].

This is the last release to support Python 2.

New Features

	Add TreePlot for plotting and examples docs
(PR #39 [https://github.com/ytree-project/ytree/pull/39])

Enhancements

	Add time field
(PR #25 [https://github.com/ytree-project/ytree/pull/25])

	Move treefarm module to separate package
(PR #28 [https://github.com/ytree-project/ytree/pull/28])

Version 2.2.1

Release date: October 24, 2018

Enhancements

	Refactor of CatalogDataFile class
(PR #21 [https://github.com/ytree-project/ytree/pull/21])

	Simplify requirements file for docs build on readthedocs.io
(PR #22 [https://github.com/ytree-project/ytree/pull/22])

Bugfixes

	Restore access to analysis fields for tree roots
(PR #23 [https://github.com/ytree-project/ytree/pull/23])

	fix field access on non-root nodes when tree is not setup
(PR #20 [https://github.com/ytree-project/ytree/pull/20])

	fix issue of uid and desc_uid fields being clobbered during
initial field access
(PR #19 [https://github.com/ytree-project/ytree/pull/19])

Version 2.2

Release date: August 28, 2018

New Features

	add vector fields.

	add select_halos function.

Enhancements

	significant refactor of field and i/o systems.

	upgrades to testing infrastructure.

Version 2.1.1

Release date: April 23, 2018

Bugfixes

	update environment.yml to fix broken readthedocs build.

Version 2.1

Release date: April 20, 2018

New Features

	add support for LHaloTree format.

	add support for Amiga Halo Finder format.

Version 2.0.2

Release date: February 16, 2018

Enhancements

	significantly improved i/o for ytree frontend.

Version 2.0

Release date: August 07, 2017

This is significant overhaul of the ytree machinery.

New Features

	tree building and field i/o now occur on-demand.

	support for yt-like derived fields that can be defined with simple
functions.

	support for yt-like alias fields allowing for universal
field naming conventions to simplify writing scripts for multiple
data formats.

	support for analysis fields which allow users to save the results
of expensive halo analysis to fields associated with each halo.

	all fields in consistent-trees and Rockstar now fully supported with
units.

	an optimized format for saving and reloading trees for fast field access.

Enhancements

	significantly improved documentation including a guide to adding support
for new file formats.

Version 1.1

Release date: January 12, 2017

New Features

	New, more yt-like field querying syntax for both arbors and tree
nodes.

Enhancements

	Python3 now supported.

	More robust unit system with restoring of unit registries from stored
json.

	Added minimum radius to halo sphere selector.

	Replaced import of yt for specific imports of all required functions.

	Added ytree logger.

	Docs updated and API reference docs added.

Bugfixes

	Allow non-root trees to be saved and reloaded.

	Fix bug allowing trees that end before the final output.

Version 1.0

Release date: Sep 26, 2016

The inaugural release of ytree!

 Index

Index

 _
 | A
 | C
 | D
 | F
 | G
 | L
 | M
 | P
 | R
 | S
 | T
 | Y

_

 	
 	__init__() (ytree.analysis.analysis_operators.AnalysisOperation method)

 	(ytree.analysis.analysis_pipeline.AnalysisPipeline method)

 	(ytree.data_structures.arbor.Arbor method)

 	(ytree.data_structures.arbor.CatalogArbor method)

 	(ytree.data_structures.arbor.SegmentedArbor method)

 	(ytree.data_structures.detection.Detector method)

 	(ytree.data_structures.detection.FieldDetector method)

 	(ytree.data_structures.detection.SelectionDetector method)

 	(ytree.data_structures.fields.FieldContainer method)

 	(ytree.data_structures.fields.FieldInfoContainer method)

 	(ytree.data_structures.io.CatalogDataFile method)

 	(ytree.data_structures.io.DataFile method)

 	(ytree.data_structures.io.DefaultRootFieldIO method)

 	(ytree.data_structures.io.FieldIO method)

 	(ytree.data_structures.io.TreeFieldIO method)

 	(ytree.data_structures.tree_node.TreeNode method)

 	(ytree.data_structures.tree_node_selector.TreeNodeSelector method)

 	(ytree.frontends.ahf.arbor.AHFArbor method)

 	(ytree.frontends.ahf.fields.AHFFieldInfo method)

 	(ytree.frontends.ahf.io.AHFDataFile method)

 	(ytree.frontends.consistent_trees.arbor.ConsistentTreesArbor method)

 	(ytree.frontends.consistent_trees.arbor.ConsistentTreesGroupArbor method)

 	(ytree.frontends.consistent_trees.arbor.ConsistentTreesHlistArbor method)

 	(ytree.frontends.consistent_trees.fields.ConsistentTreesFieldInfo method)

 	(ytree.frontends.consistent_trees.io.ConsistentTreesDataFile method)

 	(ytree.frontends.consistent_trees.io.ConsistentTreesHlistDataFile method)

 	(ytree.frontends.consistent_trees.io.ConsistentTreesTreeFieldIO method)

 	(ytree.frontends.consistent_trees_hdf5.arbor.ConsistentTreesHDF5Arbor method)

 	(ytree.frontends.consistent_trees_hdf5.fields.ConsistentTreesHDF5FieldInfo method)

 	(ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5DataFile method)

 	(ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5RootFieldIO method)

 	(ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5TreeFieldIO method)

 	(ytree.frontends.lhalotree.arbor.LHaloTreeArbor method)

 	(ytree.frontends.lhalotree.fields.LHaloTreeFieldInfo method)

 	(ytree.frontends.lhalotree.io.LHaloTreeRootFieldIO method)

 	(ytree.frontends.lhalotree.io.LHaloTreeTreeFieldIO method)

 	(ytree.frontends.lhalotree_hdf5.arbor.LHaloTreeHDF5Arbor method)

 	(ytree.frontends.lhalotree_hdf5.fields.LHaloTreeHDF5FieldInfo method)

 	(ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5DataFile method)

 	(ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5TreeFieldIO method)

 	(ytree.frontends.moria.arbor.MoriaArbor method)

 	(ytree.frontends.moria.fields.MoriaFieldInfo method)

 	(ytree.frontends.moria.io.MoriaDataFile method)

 	(ytree.frontends.moria.io.MoriaTreeFieldIO method)

 	(ytree.frontends.rockstar.arbor.RockstarArbor method)

 	(ytree.frontends.rockstar.fields.RockstarFieldInfo method)

 	(ytree.frontends.rockstar.io.RockstarDataFile method)

 	(ytree.frontends.treefarm.arbor.TreeFarmArbor method)

 	(ytree.frontends.treefarm.fields.TreeFarmFieldInfo method)

 	(ytree.frontends.treefarm.io.TreeFarmDataFile method)

 	(ytree.frontends.ytree.arbor.YTreeArbor method)

 	(ytree.frontends.ytree.io.YTreeDataFile method)

 	(ytree.frontends.ytree.io.YTreeRootFieldIO method)

 	(ytree.frontends.ytree.io.YTreeTreeFieldIO method)

 	(ytree.visualization.tree_plot.TreePlot method)

A

 	
 	add_alias_field() (ytree.data_structures.arbor.Arbor method)

 	add_analysis_field() (ytree.data_structures.arbor.Arbor method)

 	add_derived_field() (ytree.data_structures.arbor.Arbor method)

 	add_operation() (ytree.analysis.analysis_pipeline.AnalysisPipeline method)

 	add_recipe() (ytree.analysis.analysis_pipeline.AnalysisPipeline method)

 	add_tree_node_selector() (in module ytree.data_structures.tree_node_selector)

 	
 	add_vector_field() (ytree.data_structures.arbor.Arbor method)

 	AHFArbor (class in ytree.frontends.ahf.arbor)

 	AHFDataFile (class in ytree.frontends.ahf.io)

 	AHFFieldInfo (class in ytree.frontends.ahf.fields)

 	AnalysisOperation (class in ytree.analysis.analysis_operators)

 	AnalysisPipeline (class in ytree.analysis.analysis_pipeline)

 	Arbor (class in ytree.data_structures.arbor)

C

 	
 	CatalogArbor (class in ytree.data_structures.arbor)

 	CatalogDataFile (class in ytree.data_structures.io)

 	ConsistentTreesArbor (class in ytree.frontends.consistent_trees.arbor)

 	ConsistentTreesDataFile (class in ytree.frontends.consistent_trees.io)

 	ConsistentTreesFieldInfo (class in ytree.frontends.consistent_trees.fields)

 	ConsistentTreesGroupArbor (class in ytree.frontends.consistent_trees.arbor)

 	ConsistentTreesHDF5Arbor (class in ytree.frontends.consistent_trees_hdf5.arbor)

 	
 	ConsistentTreesHDF5DataFile (class in ytree.frontends.consistent_trees_hdf5.io)

 	ConsistentTreesHDF5FieldInfo (class in ytree.frontends.consistent_trees_hdf5.fields)

 	ConsistentTreesHDF5RootFieldIO (class in ytree.frontends.consistent_trees_hdf5.io)

 	ConsistentTreesHDF5TreeFieldIO (class in ytree.frontends.consistent_trees_hdf5.io)

 	ConsistentTreesHlistArbor (class in ytree.frontends.consistent_trees.arbor)

 	ConsistentTreesHlistDataFile (class in ytree.frontends.consistent_trees.io)

 	ConsistentTreesTreeFieldIO (class in ytree.frontends.consistent_trees.io)

D

 	
 	DataFile (class in ytree.data_structures.io)

 	
 	DefaultRootFieldIO (class in ytree.data_structures.io)

 	Detector (class in ytree.data_structures.detection)

F

 	
 	FieldContainer (class in ytree.data_structures.fields)

 	FieldDetector (class in ytree.data_structures.detection)

 	
 	FieldInfoContainer (class in ytree.data_structures.fields)

 	FieldIO (class in ytree.data_structures.io)

G

 	
 	get_leaf_nodes() (ytree.data_structures.tree_node.TreeNode method)

 	get_node() (ytree.data_structures.tree_node.TreeNode method)

 	
 	get_nodes_from_selection() (ytree.frontends.ytree.arbor.YTreeArbor method)

 	get_root_nodes() (ytree.data_structures.tree_node.TreeNode method)

 	get_yt_selection() (ytree.frontends.ytree.arbor.YTreeArbor method)

L

 	
 	LHaloTreeArbor (class in ytree.frontends.lhalotree.arbor)

 	LHaloTreeFieldInfo (class in ytree.frontends.lhalotree.fields)

 	LHaloTreeHDF5Arbor (class in ytree.frontends.lhalotree_hdf5.arbor)

 	LHaloTreeHDF5DataFile (class in ytree.frontends.lhalotree_hdf5.io)

 	
 	LHaloTreeHDF5FieldInfo (class in ytree.frontends.lhalotree_hdf5.fields)

 	LHaloTreeHDF5TreeFieldIO (class in ytree.frontends.lhalotree_hdf5.io)

 	LHaloTreeRootFieldIO (class in ytree.frontends.lhalotree.io)

 	LHaloTreeTreeFieldIO (class in ytree.frontends.lhalotree.io)

 	load() (in module ytree.data_structures.load)

M

 	
 	max_field_value() (in module ytree.data_structures.tree_node_selector)

 	min_field_value() (in module ytree.data_structures.tree_node_selector)

 	min_mass (ytree.visualization.tree_plot.TreePlot attribute)

 	min_mass_ratio (ytree.visualization.tree_plot.TreePlot attribute)

 	
 	MoriaArbor (class in ytree.frontends.moria.arbor)

 	MoriaDataFile (class in ytree.frontends.moria.io)

 	MoriaFieldInfo (class in ytree.frontends.moria.fields)

 	MoriaTreeFieldIO (class in ytree.frontends.moria.io)

P

 	
 	parallel_nodes() (in module ytree.utilities.parallel)

 	parallel_tree_nodes() (in module ytree.utilities.parallel)

 	
 	parallel_trees() (in module ytree.utilities.parallel)

 	process_target() (ytree.analysis.analysis_pipeline.AnalysisPipeline method)

R

 	
 	RockstarArbor (class in ytree.frontends.rockstar.arbor)

 	
 	RockstarDataFile (class in ytree.frontends.rockstar.io)

 	RockstarFieldInfo (class in ytree.frontends.rockstar.fields)

S

 	
 	save() (ytree.visualization.tree_plot.TreePlot method)

 	save_arbor() (ytree.data_structures.arbor.Arbor method)

 	save_tree() (ytree.data_structures.tree_node.TreeNode method)

 	SegmentedArbor (class in ytree.data_structures.arbor)

 	
 	select_halos() (ytree.data_structures.arbor.Arbor method)

 	SelectionDetector (class in ytree.data_structures.detection)

 	set_selector() (ytree.data_structures.arbor.Arbor method)

 	size_field (ytree.visualization.tree_plot.TreePlot attribute)

 	size_log (ytree.visualization.tree_plot.TreePlot attribute)

T

 	
 	TreeFarmArbor (class in ytree.frontends.treefarm.arbor)

 	TreeFarmDataFile (class in ytree.frontends.treefarm.io)

 	TreeFarmFieldInfo (class in ytree.frontends.treefarm.fields)

 	
 	TreeFieldIO (class in ytree.data_structures.io)

 	TreeNode (class in ytree.data_structures.tree_node)

 	TreeNodeSelector (class in ytree.data_structures.tree_node_selector)

 	TreePlot (class in ytree.visualization.tree_plot)

Y

 	
 	ytds (ytree.frontends.ytree.arbor.YTreeArbor attribute)

 	YTreeArbor (class in ytree.frontends.ytree.arbor)

 	
 	YTreeDataFile (class in ytree.frontends.ytree.io)

 	YTreeRootFieldIO (class in ytree.frontends.ytree.io)

 	YTreeTreeFieldIO (class in ytree.frontends.ytree.io)

_images/tree.png

nav.xhtml

 Table of Contents

 		
 Welcome to ytree.

 		
 Installation

 		
 What version do I have?

 		
 Sample Data

 		
 An Important Note on Comoving and Proper Units

 		
 Working with Merger Trees

 		
 Loading Data

 		
 Loading Data

 		
 Getting Started with Merger Trees

 		
 How many trees are there?

 		
 Root Fields

 		
 Accessing Individual Trees

 		
 Accessing the Nodes in a Tree or Forest

 		
 Accessing All Nodes in a Tree

 		
 Accessing All Nodes in a Forest

 		
 Accessing a Halo’s Ancestors and Descendent

 		
 Accessing the Progenitor Lineage of a Tree

 		
 Customizing the Progenitor Line

 		
 Accessing a Single Node in a Tree

 		
 Accessing the Leaf Nodes of a Tree

 		
 Accessing the Root Nodes of a Forest

 		
 Saving Arbors and Trees

 		
 Searching Through Merger Trees (Accessing Like a Database)

 		
 Select Halos

 		
 Select Halos with yt

 		
 Creating the Selection

 		
 Querying the Selection

 		
 Getting Halos from the Selection

 		
 Halos and Fields from yt Data Containers

 		
 Fields in ytree

 		
 The Field Info Container

 		
 Fields on Disk

 		
 Alias Fields

 		
 Derived Fields

 		
 Vector Fields

 		
 Analysis Fields

 		
 Re-saving Analysis Fields

 		
 Plotting Merger Trees

 		
 Additional Dependencies

 		
 Making Tree Plots

 		
 Plot Modifications

 		
 Customizing Node Appearance

 		
 Customizing Edge Appearance

 		
 Supported Output Formats

 		
 Parallel Computing with ytree

 		
 Enabling Parallelism and Running in Parallel

 		
 Parallel Iterators

 		
 Parallelizing over Trees

 		
 Parallelizing over Nodes in a Single Tree

 		
 Parallelizing over Nodes in a List of Trees

 		
 Analyzing Merger Trees

 		
 The AnalysisPipeline

 		
 Creating an AnalysisPipeline

 		
 Creating Pipeline Operations

 		
 Adding Extra Function Arguments

 		
 Organizing File Output by Operation

 		
 Using a Function as a Filter

 		
 Adding Operations that Always Run

 		
 Modifying a Node

 		
 Running the Pipeline

 		
 Creating a Analysis Recipe

 		
 Putting it all Together: Parallel Analysis

 		
 Example Applications

 		
 Halo Age (a50)

 		
 Significance

 		
 Community Code of Conduct

 		
 Contributing to ytree

 		
 Developer Guide

 		
 Contributing in a Nutshell

 		
 Testing

 		
 Testing Data

 		
 Installing Development Dependencies

 		
 Run the Tests

 		
 Adding Support for a New Format

 		
 Where do the files go?

 		
 Building Your Frontend

 		
 The _is_valid Function

 		
 Two Types of Arbors

 		
 Field Units and Aliases (fields.py)

 		
 You made it!

 		
 Everyone Loves Samples

 		
 Help

 		
 Citing ytree

 		
 Reference

 		
 API Reference

 		
 Working with Merger Trees

 		
 Visualizing Merger Trees

 		
 Analysis Pipeline

 		
 Parallelism

 		
 Internal Classes

 		
 ChangeLog

 		
 Contributors

 		
 Version 3.1.2

 		
 Version 3.1.1

 		
 Version 3.1

 		
 Version 3.0

 		
 Version 2.3

 		
 Version 2.2.1

 		
 Version 2.2

 		
 Version 2.1.1

 		
 Version 2.1

 		
 Version 2.0.2

 		
 Version 2.0

 		
 Version 1.1

 		
 Version 1.0

_images/tree_small.png

_static/ajax-loader.gif

_images/tree_custom_edge.png
