
ytree Documentation
Release 3.0.0

Britton Smith

Aug 03, 2021

Contents

1 I want to make merger trees! 3

2 Table of Contents 5
2.1 Installation . 5
2.2 What version do I have? . 5
2.3 Sample Data . 5
2.4 An Important Note on Comoving and Proper Units . 6
2.5 Working with Merger Trees . 6
2.6 Fields in ytree . 19
2.7 Plotting Merger Trees . 21
2.8 Parallel Computing with ytree . 24
2.9 Example Applications . 28
2.10 Community Code of Conduct . 30
2.11 Contributing to ytree . 31
2.12 Developer Guide . 31
2.13 Help . 36
2.14 Citing ytree . 36
2.15 Reference . 36

3 Citing ytree 93

4 Search 95

Index 97

i

ii

ytree Documentation, Release 3.0.0

ytree is a tool for working with merger tree data from multiple sources. ytree is an extension of the yt analysis
toolkit and provides a similar interface for merger tree data that includes universal field names, derived fields, and
symbolic units. ytree is able to load in merger tree from the following formats:

• Amiga Halo Finder

• Consistent-Trees

• Consistent-Trees-HDF5

• LHaloTree

• LHaloTree-HDF5

• MORIA

• Rockstar Catalogs

• TreeFarm

• TreeFrog

See Loading Data for instructions specific to each format. All formats can be resaved with a universal format that can
be reloaded with ytree. Individual trees for single halos can also be saved.

Contents 1

https://yt-project.org/

ytree Documentation, Release 3.0.0

2 Contents

CHAPTER 1

I want to make merger trees!

If you have halo catalog data that can be loaded by yt, then you can use the treefarm package to create merger trees.
treefarm was once a part of ytree, but is now its own thing.

3

https://yt-project.org/
https://treefarm.readthedocs.io/
https://treefarm.readthedocs.io/

ytree Documentation, Release 3.0.0

4 Chapter 1. I want to make merger trees!

CHAPTER 2

Table of Contents

2.1 Installation

ytree’s main dependency is yt. Once you have installed yt following the instructions here, ytree can be installed
using pip.

$ pip install ytree

If you’d like to install the development version, the repository can be found at https://github.com/ytree-project/ytree.
This can be installed by doing:

$ git clone https://github.com/ytree-project/ytree
$ cd ytree
$ pip install -e .

2.2 What version do I have?

To see what version of ytree you are using, do the following:

>>> import ytree
>>> print (ytree.__version__)

2.3 Sample Data

Sample datasets for every supported data format are available for download from the yt Hub in the ytree data collection.
The entire collection (about 979 MB) can be downloaded via the yt Hub’s web interface by clicking on “Actions” drop-
down menu on the far right and selecting “Download collection.” Individual datasets can also be downloaded from this
interface. Finally, the entire collection can be downloaded through the girder-client interface:

5

http://yt-project.org/
http://yt-project.org/#getyt
https://github.com/ytree-project/ytree
https://girder.hub.yt/
https://girder.hub.yt/#collection/59835a1ee2a67400016a2cda

ytree Documentation, Release 3.0.0

$ pip install girder-client
$ girder-cli --api-url https://girder.hub.yt/api/v1 download 59835a1ee2a67400016a2cda
→˓ytree_data

2.4 An Important Note on Comoving and Proper Units

Users of yt are likely familiar with conversion from proper to comoving reference frames by adding “cm” to a unit.
For example, proper “Mpc” becomes comoving with “Mpccm”. This conversion relies on all the data being associated
with a single redshift. This is not possible here because the dataset has values for multiple redshifts. To account for
this, the proper and comoving unit systems are set to be equal to each other.

>>> print (a.box_size)
100.0 Mpc/h
>>> print (a.box_size.to("Mpccm/h"))
100.0 Mpccm/h

Data should be assumed to be in the reference frame in which it was saved. For length scales, this is typically the
comoving frame. When in doubt, the safest unit to use for lengths is “unitary”, which a system normalized to the box
size.

>>> print (a.box_size.to("unitary"))
1.0 unitary

2.5 Working with Merger Trees

The Arbor class is responsible for loading and providing access to merger tree data. In this document, a loaded
merger tree dataset is referred to as an arbor. ytree provides several different ways to navigate, query, and analyze
merger trees. It is recommended that you read this entire section to identify the way that is best for what you want to
do.

2.5.1 Loading Data

ytree can load merger tree data from multiple sources using the load command.

>>> import ytree
>>> a = ytree.load("consistent_trees/tree_0_0_0.dat")

This command will determine the correct format and read in the data accordingly. For examples of loading each
format, see below.

Loading Data

Below are instructions for loading all supported datasets. All examples use the freely available Sample Data.

Amiga Halo Finder

The Amiga Halo Finder format stores data in a series of files, with one each per snapshot. Parameters are stored in
“.parameters” and “.log” files, halo information in “.AHF_halos” files, and descendent/ancestor links are stored in

6 Chapter 2. Table of Contents

http://popia.ft.uam.es/AHF/Download.html

ytree Documentation, Release 3.0.0

“.AHF_mtree” files. Make sure to keep all of these together. To load, provide the name of the first “.parameter” file.

>>> import ytree
>>> a = ytree.load("ahf_halos/snap_N64L16_000.parameter",
... hubble_constant=0.7)

Note: Four important notes about loading AHF data:

1. The dimensionless Hubble parameter is not provided in AHF outputs. This should be supplied by hand using
the hubble_constant keyword. The default value is 1.0.

2. If the “.log” file is named in a unconventional way or cannot be found for some reason, its path can be
specified with the log_filename keyword argument. If no log file exists, values for omega_matter,
omega_lambda, and box_size (in units of Mpc/h) can be provided with keyword arguments named thusly.

3. There will be no “.AHF_mtree” file for index 0 as the “.AHF_mtree” files store links between files N-1 and N.

4. ytree is able to load data where the graph has been calculated instead of the tree. However, even in this
case, only the tree is preserved in ytree. See the Amiga Halo Finder Documentation for a discussion of the
difference between graphs and trees.

Consistent-Trees

The consistent-trees format consists of a set of files called “locations.dat”, “forests.list”, at least one file named some-
thing like “tree_0_0_0.dat”. For large simulations, there may be a number of these “tree_*.dat” files. After running
Rockstar and consistent-trees, these will most likely be located in the “rockstar_halos/trees” directory. The full data
set can be loaded by providing the path to the locations.dat file.

>>> import ytree
>>> a = ytree.load("tiny_ctrees/locations.dat")

Alternatively, data from a single tree file can be loaded by providing the path to that file.

>>> import ytree
>>> a = ytree.load("consistent_trees/tree_0_0_0.dat")

Consistent-Trees hlist Files

While running consistent-trees, a series of files will be created in the “rockstar_halos/hlists” directory with the naming
convention, “hlist_<scale-factor>.list”. These are the catalogs that will be combined to make the final output files.
However, these files contain roughly 30 additional fields that are not included in the final output. Merger trees can be
loaded by providing the path to the first of these files.

>>> import ytree
>>> a = ytree.load("ctrees_hlists/hlists/hlist_0.12521.list")

Note: Note, loading trees with this method will be slower than using the standard consistent-trees output file as
ytree will have to assemble each tree across multiple files. This method is not recommended unless the additional
fields are necessary.

2.5. Working with Merger Trees 7

http://popia.ft.uam.es/AHF/Documentation.html
https://bitbucket.org/pbehroozi/consistent-trees

ytree Documentation, Release 3.0.0

Consistent-Trees-HDF5

Consistent-Trees-HDF5 is a variant of the consistent-trees format built on HDF5. It is used by the Skies & Universe
project. This format allows for access by either forests or trees as per the definitions above. The data can be stored as
either a struct of arrays or an array of structs. Both layouts are supported, but ytree is currently optimized for the
struct of arrays layout. Field access with struct of arrays will be 1 to 2 orders of magnitude faster than with array of
structs.

Datasets from this format consist of a series of HDF5 files with the naming convention, forest.h5, forest_0.5, . . . ,
forest_N.h5. The numbered files contain the actual data while the forest.h5 file contains virtual datasets that point to
the data files. To load all the data, provide the path to the virtual dataset file:

>>> import ytree
>>> a = ytree.load("consistent_trees_hdf5/soa/forest.h5")

To load a subset of the full dataset, provide a single data file or a list/tuple of files.

>>> import ytree
>>> # single file
>>> a = ytree.load("consistent_trees_hdf5/soa/forest_0.h5")
>>> # multiple data files (sample data only has one)
>>> a = ytree.load(["forest_0.h5", "forest_1.h5"])

Access by Forest

By default, ytree will load consistent-trees-hdf5 datasets to provide access to each tree, such that a[N] will re-
turn the Nth tree in the dataset and a[N]["tree"] will return all halos in that tree. However, by providing the
access="forest" keyword to load, data will be loaded according to the forest it belongs to.

>>> import ytree
>>> a = ytree.load("consistent_trees_hdf5/soa/forest.h5",
... access="forest")

In this mode, a[N] will return the Nth forest and a[N]["forest"] will return all halos in that forest. In forest
access mode, the “root” of the forest, i.e., the TreeNode object returned by doing a[N] will be the root of one of
the trees in that forest. See Accessing All Nodes in a Forest for how to locate all individual trees in a forest.

LHaloTree

The LHaloTree format is typically one or more files with a naming convention like “trees_063.0” that contain the trees
themselves and a single file with a suffix “.a_list” that contains a list of the scale factors at the time of each simulation
snapshot.

Note: The LHaloTree format loads halos by forest. There is no need to provide the access="forest" keyword
here.

In addition to the LHaloTree files, ytree also requires additional information about the simulation from a parameter
file (in Gadget format). At minimum, the parameter file should contain the cosmological parameters HubbleParam,
Omega0, OmegaLambda, BoxSize, PeriodicBoundariesOn, and ComovingIntegrationOn, and
the unit parameters UnitVelocity_in_cm_per_s, UnitLength_in_cm, and UnitMass_in_g. If not
specified explicitly (see below), a file with the extension “.param” will be searched for in the directory containing the
LHaloTree files.

8 Chapter 2. Table of Contents

https://github.com/uchuuproject/uchuutools
http://www.skiesanduniverses.org/
http://adsabs.harvard.edu/abs/2005Natur.435..629S
http://wwwmpa.mpa-garching.mpg.de/gadget/

ytree Documentation, Release 3.0.0

If all of the required files are in the same directory, an LHaloTree catalog can be loaded from the path to one of the
tree files.

>>> import ytree
>>> a = ytree.load("lhalotree/trees_063.0")

Both the scale factor and parameter files can be specified explicitly through keyword arguments if they do not match
the expected pattern or are located in a different directory than the tree files.

>>> a = ytree.load("lhalotree/trees_063.0",
... parameter_file="lhalotree/param.txt",
... scale_factor_file="lhalotree/a_list.txt")

The scale factors and/or parameters themselves can also be passed explicitly from python.

>>> import numpy as np
>>> parameters = dict(HubbleParam=0.7, Omega0=0.3, OmegaLambda=0.7,
... BoxSize=62500, PeriodicBoundariesOn=1, ComovingIntegrationOn=1,
... UnitVelocity_in_cm_per_s=100000, UnitLength_in_cm=3.08568e21,
... UnitMass_in_g=1.989e+43)
>>> scale_factors = [0.0078125, 0.012346 , 0.019608 , 0.032258 , 0.047811 ,
... 0.051965 , 0.056419 , 0.061188 , 0.066287 , 0.071732 ,
... 0.07754 , 0.083725 , 0.090306 , 0.097296 , 0.104713 ,
... 0.112572 , 0.120887 , 0.129675 , 0.13895 , 0.148724 ,
... 0.159012 , 0.169824 , 0.181174 , 0.19307 , 0.205521 ,
... 0.218536 , 0.232121 , 0.24628 , 0.261016 , 0.27633 ,
... 0.292223 , 0.308691 , 0.32573 , 0.343332 , 0.361489 ,
... 0.380189 , 0.399419 , 0.419161 , 0.439397 , 0.460105 ,
... 0.481261 , 0.502839 , 0.524807 , 0.547136 , 0.569789 ,
... 0.59273 , 0.615919 , 0.639314 , 0.66287 , 0.686541 ,
... 0.710278 , 0.734031 , 0.757746 , 0.781371 , 0.804849 ,
... 0.828124 , 0.851138 , 0.873833 , 0.896151 , 0.918031 ,
... 0.939414 , 0.960243 , 0.980457 , 1.]
>>> a = ytree.load("lhalotree/trees_063.0",
... parameters=parameters,
... scale_factors=scale_factors)

LHaloTree-HDF5

This is the same algorithm as LHaloTree, except with data saved in HDF5 files instead of unformatted binary.
LHaloTree-HDF5 is one of the formats used by the Illustris-TNG project and is described in detail here. Like
LHaloTree, this format supports accessing trees by forest. The LHaloTree-HDF5 format stores trees in multiple HDF5
files contained within a single directory. Each tree is fully contained within a single file, so loading is possible even
when only a subset of all files is present. To load, provide the path to one file.

>>> import ytree
>>> a = ytree.load("TNG50-4-Dark/trees_sf1_099.0.hdf5")

The files do not contain information on the box size and cosmological parameters of the simulation, but they can be
provided by hand, with the box size assumed to be in units of comoving Mpc/h.

>>> import ytree
>>> a = ytree.load("TNG50-4-Dark/trees_sf1_099.0.hdf5",
... box_size=35, hubble_constant=0.6774,
... omega_matter=0.3089, omega_lambda=0.6911)

2.5. Working with Merger Trees 9

https://www.tng-project.org/
https://www.tng-project.org/data/docs/specifications/#sec4b

ytree Documentation, Release 3.0.0

The LHaloTree-HDF5 format contains multiple definitions of halo mass (see here), and as such, the field alias “mass”
is not defined by default. However, the alias can be created if one is preferable. This is also necessary to facilitate
Accessing the Progenitor Lineage of a Tree.

>>> a.add_alias_field("mass", "Group_M_TopHat200", units="Msun")

MORIA

MORIA is a merger tree extension of the SPARTA code (Diemer 2017; Diemer 2020a). An output from MORIA is a
single HDF5 file, whose path should be provided for loading.

>>> import ytree
>>> a = ytree.load("moria/moria_tree_testsim050.hdf5")

Merger trees in MORIA are organized by forest, so printing a.size (following the example above) will give the
number of forests, not the number of trees. MORIA outputs contain multiple definitions of halo mass (see here), and
as such, the field alias “mass” is not defined by default. However, the alias can be created if one is preferable. This is
also necessary to facilitate Accessing the Progenitor Lineage of a Tree.

>>> a.add_alias_field("mass", "Mpeak", units="Msun")

On rare occasions, a halo will be missing from the output even though another halo claims it as its descendent. This is
usually because the halo has dropped below the minimum mass to be included. In these cases, MORIA will reassign
the halo’s descendent using the descendant_index field (see discussion in here). If ytree encounters such a
situation, a message like the one below will be printed.

>>> t = a[85]
>>> print (t["tree", "Mpeak"])
ytree: [INFO] 2021-05-04 15:29:19,723 Reassigning descendent of halo 374749 from
→˓398837 to 398836.
[1.458e+13 1.422e+13 1.363e+13 1.325e+13 1.295e+13 1.258e+13 1.212e+13 ...
1.309e+11 1.178e+11 1.178e+11 1.080e+11 9.596e+10 8.397e+10] Msun/h

Rockstar Catalogs

Rockstar catalogs with the naming convention “out_*.list” will contain information on the descendent ID of each halo
and can be loaded independently of consistent-trees. This can be useful when your simulation has very few halos, such
as in a zoom-in simulation. To load in this format, simply provide the path to one of these files.

>>> import ytree
>>> a = ytree.load("rockstar/rockstar_halos/out_0.list")

TreeFarm

Merger trees created with treefarm can be loaded in by providing the path to one of the catalogs created during the
calculation.

>>> import ytree
>>> a = ytree.load("tree_farm/tree_farm_descendents/fof_subhalo_tab_000.0.h5")

10 Chapter 2. Table of Contents

https://www.tng-project.org/data/docs/specifications/#sec4b
https://bdiemer.bitbucket.io/sparta/analysis_moria.html
https://bdiemer.bitbucket.io/sparta/index.html
https://ui.adsabs.harvard.edu/abs/2017ApJS..231....5D/
https://ui.adsabs.harvard.edu/abs/2020ApJS..251...17D/
https://bdiemer.bitbucket.io/sparta/analysis_moria_output.html#complete-list-of-catalog-tree-fields-in-erebos-catalogs
https://bdiemer.bitbucket.io/sparta/analysis_moria_output.html
https://bitbucket.org/gfcstanford/rockstar
https://treefarm.readthedocs.io/

ytree Documentation, Release 3.0.0

TreeFrog

TreeFrog generates merger trees primarily for VELOCIraptor halo catalogs. The TreeFrog format consists of a series
of HDF5 files. One file contains meta-data for the entire dataset. The other files contain the tree data, split into HDF5
groups corresponding to the original halo catalogs. To load, provide the path to the “foreststats” file, i.e., the one
ending in “.hdf5”.

>>> import ytree
>>> a = ytree.load("treefrog/VELOCIraptor.tree.t4.0-131.walkabletree.sage.forestID.
→˓foreststats.hdf5")

Merger trees in TreeFrog are organized by forest, so printing a.size (following the example above) will give the
number of forests. Note, however, the id of the root halo for any given forest is not the same as the forest id.

>>> my_tree = a[0]
>>> print (my_tree["uid"])
131000000000001
>>> print (my_tree["ForestID"])
104000000011727

TreeFrog outputs contain multiple definitions of halo mass, and as such, the field alias “mass” is not defined by default.
However, the alias can be created if one is preferable. This is also necessary to facilitate Accessing the Progenitor
Lineage of a Tree.

>>> a.add_alias_field("mass", "Mass_200crit", units="Msun")

Saved Arbors (ytree format)

Once merger tree data has been loaded, it can be saved to a universal format using save_arbor or save_tree.
These can be loaded by providing the path to the primary HDF5 file.

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")

See Saving Arbors and Trees for more information on saving arbors and trees.

2.5.2 Getting Started with Merger Trees

Very little happens immediately after a dataset has been loaded. All tree construction and data access occurs only on
demand. After loading, information such as the simulation box size, cosmological parameters, and the available fields
can be accessed.

>>> print (a.box_size)
100.0 Mpc/h
>>> print (a.hubble_constant, a.omega_matter, a.omega_lambda)
0.695 0.285 0.715
>>> print (a.field_list)
['scale', 'id', 'desc_scale', 'desc_id', 'num_prog', ...]

Similar to yt, ytree supports accessing fields by their native names as well as generalized aliases. For more infor-
mation on fields in ytree, see Fields in ytree.

2.5. Working with Merger Trees 11

https://github.com/pelahi/TreeFrog
https://github.com/pelahi/VELOCIraptor-STF
http://yt-project.org/docs/dev/analyzing/fields.html

ytree Documentation, Release 3.0.0

How many trees are there?

The total number of trees in the arbor can be found using the size attribute. As soon as any information about the
collection of trees within the loaded dataset is requested, arrays will be created containing the metadata required for
generating the root nodes of every tree.

>>> print (a.size)
Loading tree roots: 100%|| 5105985/5105985 [00:00<00:00, 505656111.95it/s]
327

Root Fields

Field data for all tree roots is accessed by querying the Arbor in a dictionary-like manner.

>>> print (a["mass"])
Getting root fields: 100%|| 327/327 [00:00<00:00, 9108.67it/s]
[6.57410072e+14 5.28489209e+14 5.18129496e+14 4.88920863e+14, ...,

8.68489209e+11 8.68489209e+11 8.68489209e+11] Msun

ytree uses the unyt package for symbolic units on NumPy arrays.

>>> print (a["virial_radius"].to("Mpc/h"))
[1.583027 1.471894 1.462154 1.434253 1.354779 1.341322 1.28617, ...,

0.173696 0.173696 0.173696 0.173696 0.173696] Mpc/h

When dealing with cosmological simulations, care must be taken to distinguish between comoving and proper ref-
erence frames. Please read An Important Note on Comoving and Proper Units before your magical ytree journey
begins.

Accessing Individual Trees

Individual trees can be accessed by indexing the Arbor object.

>>> print (a[0])
TreeNode[12900]

A TreeNode is one halo in a merger tree. The number is the universal identifier associated with halo. It is unique to
the whole arbor. Fields can be accessed for any given TreeNode in the same dictionary-like fashion.

>>> my_tree = a[0]
>>> print (my_tree["mass"])
657410071942446.1 Msun

Array slicing can also be used to select multiple TreeNode objects. This will return a generator that can be iterated
over or cast to a list.

>>> every_second_tree = list(a[::2])
>>> print (every_second_tree[0]["mass"])
657410071942446.1 Msun

Note, the Arbor object does not store individual TreeNode objects, it only generates them. Thus, one must explic-
itly keep around any TreeNode object for changes to persist. This is illustrated below:

12 Chapter 2. Table of Contents

https://unyt.readthedocs.io/

ytree Documentation, Release 3.0.0

>>> # this will not work
>>> a[0].thing = 5
>>> print (a[0].thing)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'TreeNode' object has no attribute 'thing'
>>> # this will work
>>> my_tree = a[0]
>>> my_tree.thing = 5
>>> print (my_tree.thing)
5

The only exception to this is computing the number of nodes in a tree. This information will be propagated back to
the Arbor as it can be expensive to compute for large trees.

>>> my_tree = a[0]
print (my_tree.tree_size) # call function to calculate tree size
691
>>> new_tree = a[0]
print (new_tree.tree_size) # retrieved from a cache
691

Accessing the Nodes in a Tree or Forest

A node is defined as a single halo at a single time in a merger tree. Throughout these docs, the words halo and node
are used interchangeably. Nodes in a given tree can be accessed in three different ways: by Accessing All Nodes in
a Tree, Accessing All Nodes in a Forest, or Accessing the Progenitor Lineage of a Tree. Each of these will return a
generator of TreeNode objects or field values for all TreeNode objects in the tree, forest, or progenitor line. To get
a specific node from a tree, see Accessing a Single Node in a Tree.

Note: Access by forest is supported even for datasets that do not group trees by forest. If you have no requirement for
the order in which nodes are to be returned, then access by forest is recommended as it will be considerably faster than
access by tree. Access by tree is effectively a depth-first walk through the tree. This requires additional data structures
to be built, whereas forest access does not.

Accessing All Nodes in a Tree

The full lineage of the tree can be accessed by querying any TreeNode with the tree keyword. As of ytree
version 3.0, this returns a generator that can be used to loop through all nodes in the tree.

>>> print (my_tree["tree"])
<generator object TreeNode._tree_nodes at 0x11bbc1f20>
>>> # loop over nodes
>>> for my_node in my_tree["tree"]:
... print (my_node, my_node["mass"])
TreeNode[12900] 657410100000000.0 Msun
TreeNode[12539] 657410100000000.0 Msun
TreeNode[12166] 653956900000000.0 Msun
TreeNode[11796] 650071960000000.0 Msun
...

To store all the nodes in a single structure, convert it to a list:

2.5. Working with Merger Trees 13

ytree Documentation, Release 3.0.0

>>> print (list(my_tree["tree"]))
[TreeNode[12900], TreeNode[12539], TreeNode[12166], TreeNode[11796], ...
TreeNode[591]]

Fields can be queried for the tree by including the field name.

>>> print (my_tree["tree", "virial_radius"])
[2277.73669065 2290.65899281 2301.43165468 2311.47625899 2313.99280576 ...

434.59856115 410.13381295 411.25755396] kpc

The above examples will work for any halo in the tree, not just the final halo. The full tree leading up to any given
halo can be accessed in the same way.

>>> tree_nodes = list(my_tree["tree"])
>>> # start with the 3rd halo in the above tree
>>> sub_tree = tree_nodes[2]
>>> print (list(sub_tree["tree"]))
[TreeNode[12166], TreeNode[11796], TreeNode[11431], TreeNode[11077], ...
TreeNode[591]]

>>> print (sub_tree["tree", "virial_radius"])
[2301.4316 2311.4763 2313.993 2331.413 2345.5454 2349.918 ...
434.59857 410.13382 411.25757] kpc

Accessing All Nodes in a Forest

The Consistent-Trees-HDF5, LHaloTree, LHaloTree-HDF5, MORIA, TreeFrog formats provide access to halos
grouped by forest. A forest is a group of trees with halos that interact in a non-merging way through processes
like fly-bys.

>>> import ytree
>>> a = ytree.load("consistent_trees_hdf5/soa/forest.h5",
... access="forest")
>>> my_forest = a[0]
>>> # all halos in the forest
>>> print (list(my_forest["forest"]))
[TreeNode[90049568], TreeNode[88202573], TreeNode[86292249], ...
TreeNode[9272027], TreeNode[7435733], TreeNode[5768880]]

>>> # all halo masses in forest
>>> print (my_forest["forest", "mass"])
[3.38352524e+11 3.34071450e+11 3.34071450e+11 3.31709477e+11 ...
7.24092117e+09 4.34455270e+09] Msun

To find all the roots in that forest, i.e., the roots of all individual trees contained, see Accessing the Root Nodes of a
Forest.

Accessing a Halo’s Ancestors and Descendent

The direct ancestors of any TreeNode object can be accessed through the ancestors attribute.

>>> my_ancestors = list(my_tree.ancestors)
>>> print (my_ancestors)
[TreeNode[12539]]

A halo’s descendent can be accessed in a similar fashion.

14 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

>>> print (my_ancestors[0].descendent)
TreeNode[12900]

Accessing the Progenitor Lineage of a Tree

Similar to the tree keyword, the prog keyword can be used to access the line of main progenitors. Just as above,
this returns a generator of TreeNode objects.

>>> print (list(my_tree["prog"]))
[TreeNode[12900], TreeNode[12539], TreeNode[12166], TreeNode[11796], ...
TreeNode[62]]

Fields for the main progenitors can be accessed just like for the whole tree.

>>> print (my_tree["prog", "mass"])
[6.57410072e+14 6.57410072e+14 6.53956835e+14 6.50071942e+14 ...

8.29496403e+13 7.72949640e+13 6.81726619e+13 5.99280576e+13] Msun

Progenitor lists and fields can be accessed for any halo in the tree.

>>> tree_nodes = list(my_tree["tree"])
>>> # pick a random halo in the tree
>>> my_halo = tree_nodes[42]
>>> print (list(my_halo["prog"]))
[TreeNode[588], TreeNode[446], TreeNode[317], TreeNode[200], TreeNode[105],
TreeNode[62]]

>>> print (my_halo["prog", "virial_radius"])
[1404.1354 1381.4087 1392.2404 1363.2145 1310.3842 1258.0159] kpc

Customizing the Progenitor Line

By default, the progenitor line is defined as the line of the most massive ancestors. This can be changed by calling the
set_selector.

>>> a.set_selector("max_field_value", "virial_radius")

New selector functions can also be supplied. These functions should minimally accept a list of ancestors and return a
single TreeNode.

>>> def max_value(ancestors, field):
... vals = np.array([a[field] for a in ancestors])
... return ancestors[np.argmax(vals)]
...
>>> ytree.add_tree_node_selector("max_field_value", max_value)
>>>
>>> a.set_selector("max_field_value", "mass")
>>> my_tree = a[0]
>>> print (list(my_tree["prog"]))

Accessing a Single Node in a Tree

The get_node functions can be used to retrieve a single node from the forest, tree, or progenitor lists.

2.5. Working with Merger Trees 15

ytree Documentation, Release 3.0.0

>>> my_tree = a[0]
>>> my_node = my_tree.get_node("forest", 5)

This function can be called for any node in a tree. For selection by “tree” or “prog”, the index of the node returned
will be relative to the calling node, i.e., calling with 0 will return the original node. For selection by “forest”, the index
is the absolute index within the entire forest and not relative to the calling node.

Accessing the Leaf Nodes of a Tree

The leaf nodes of a tree are the nodes with no ancestors. These are the very first halos to form. Accessing them for
any tree can be useful for semi-analytical models or any framework where you want to start at the origins of a halo
and work forward in time. The get_leaf_nodes function will return a generator of all leaf nodes of a tree’s forest,
tree, or progenitor lists.

>>> my_tree = a[0]
>>> my_leaves = my_tree.get_leaf_nodes(selector="forest")
>>> for my_leaf in my_leaves:
... print (my_leaf)

Similar to the get_node function, calling get_leaf_nodes with selector set to “tree” or “prog” will return
only leaf nodes from the tree for which the calling node is the head. With selector set to “forest”, the resulting leaf
nodes will be all the leaf nodes in the forest, regardless of the calling node.

Accessing the Root Nodes of a Forest

A forest can have multiple root nodes, i.e., nodes that have no descendent. The get_root_nodes function will
return a generator of all the root nodes in the forest. This function can be called from any tree within a forest.

>>> my_tree = a[0]
>>> my_roots = my_tree.get_root_nodes()
>>> for my_root in my_roots:
... print (my_root)

2.5.3 Saving Arbors and Trees

Arbors of any type can be saved to a universal file format with the save_arbor function. These can be reloaded
with the load command. This format is optimized for fast tree-building and field-access and so is recommended for
most situations.

>>> fn = a.save_arbor()
Setting up trees: 100%|| 327/327 [00:00<00:00, 483787.45it/s]
Getting fields [1/1]: 100%|| 327/327 [00:00<00:00, 36704.51it/s]
Creating field arrays [1/1]: 100%|| 613895/613895 [00:00<00:00, 7931878.47it/s]
>>> a2 = ytree.load(fn)

By default, all trees and all fields will be saved, but this can be customized with the trees and fields keywords.

For convenience, individual trees can also be saved by calling save_tree.

>>> my_tree = a[0]
>>> fn = my_tree.save_tree()
Creating field arrays [1/1]: 100%|| 4897/4897 [00:00<00:00, 13711286.17it/s]
>>> a2 = ytree.load(fn)

16 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

2.5.4 Searching Through Merger Trees (Accessing Like a Database)

There are a couple different ways to search through a merger tree dataset to find halos meeting various criteria, similar
to the type of selection done with a relational database. The method discussed in Select Halos can be used with all
data loadable with ytree, while the one described in Select Halos with yt is only available for Saved Arbors (ytree
format).

Select Halos

The select_halos function can be used to search the Arbor for halos matching a specific set of criteria.

>>> halos = list(a.select_halos("tree['forest', 'mass'].to('Msun') > 5e11"))
Selecting halos (found 3): 100%|| 32/32 [00:00<00:00, 107.70it/s]
>>> print (halos)
[TreeNode[1457223360], TreeNode[1457381406], TreeNode[1420495006]]

The select_halos function will return a generator of TreeNode objects that can be iterated over or cast to a list,
as above. The function will return halos as they are found so the user does not have to wait until the end to begin
working with them. The progress bar will continually update to report the number of matches found.

The selection criteria string should be designed to eval correctly with a TreeNode object, named “tree”. More
complex criteria can be supplied using & and |.

>>> for halo in a.select_halos("(tree['tree', 'mass'].to('Msun') > 2e11) & (tree['tree
→˓', 'redshift'] < 0.2)"):
... progenitor_pos = halo["prog", "position"]
Selecting halos (found 69): 100%|| 32/32 [00:01<00:00, 22.50it/s]

Select Halos with yt

Note: This functionality only works with Saved Arbors (ytree format). You will need to save your data in the ytree
format.

The get_yt_selection function provides enhanced functionality beyond the capabilities of select_halos by
loading the dataset into yt. Given search criteria, get_yt_selection will return a YTCutRegion data container
that can then be queried to get the value of any field for all halos meeting the criteria. This YTCutRegion can then
be used to generate tree nodes or query fields.

Creating the Selection

Search criteria can be provided using a series of keywords: above, below, equal, and about.

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> selection = a.get_yt_selection(,
... above=[("mass", 1e13, "Msun"),
... ("redshift", 0.5)])

An individual criterion should be expressed as a tuple (e.g., (field, value, <units>)), and the above key-
words accept a list of those tuples. The criteria keywords can be given together and the halos must meet all criteria,
i.e., the criteria are combined with an AND operator.

2.5. Working with Merger Trees 17

https://yt-project.org/
http://yt-project.org/docs/dev/reference/api/yt.data_objects.selection_objects.cut_region.html#yt.data_objects.selection_objects.cut_region.YTCutRegion
http://yt-project.org/docs/dev/reference/api/yt.data_objects.selection_objects.cut_region.html#yt.data_objects.selection_objects.cut_region.YTCutRegion

ytree Documentation, Release 3.0.0

>>> selection = a.get_yt_selection(
... below=[("mass", 1e13, "Msun")],
... above=[("redshift", 1)])

For more complex search criteria, a cut region conditional string can be provided instead. These should be of the form
described in Cut Regions. These cannot not be given with any of the previously mentioned keywords.

>>> selection = a.get_yt_selection(
... conditionals=['obj["halos", "mass"] > 1e12'])

Querying the Selection

The selection object returned by get_yt_selection can then be queried to get field values for all matching halos.
Fields should be queried as ("halos", <field name>).

>>> # halos with masses of 1e14 Msun +/- 5%
>>> selection = a.get_yt_selection(

about=[("mass", 1e14, "Msun", 0.05)])

>>> print (selection["halos", "redshift"])
[0.82939091 0.97172537 1.02453741 0.31893065 0.74571856 0.97172537 ...
0.50455122 0.53499009 0.18907477 0.29567248 0.31893065] dimensionless

Getting Halos from the Selection

The get_nodes_from_selection function will return a generator of TreeNode objects for all halos contained
within the selection.

>>> # halos with masses of 1e14 Msun +/- 5%
>>> selection = a.get_yt_selection(

about=[("mass", 1e14, "Msun", 0.05)])

>>> for node in a.get_nodes_from_selection(selector):
... print (node["prog", "mass"])

This function can generate TreeNode objects for any yt data container.

2.5.5 Halos and Fields from yt Data Containers

Note: This functionality only works with Saved Arbors (ytree format). You will need to save your data in the ytree
format.

For merger tree data in the ytree format, the ytds attribute provides access to the data as a yt dataset. This allows one
to analyze the entire dataset using the full range of functionality provided by yt. In this way, a merger tree dataset is
very much like any particle dataset, where each particle represent a halo at a single time. For example, this makes it
possible to select halos within geometric data containers, like spheres or regions.

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")

(continues on next page)

18 Chapter 2. Table of Contents

http://yt-project.org/docs/dev/analyzing/filtering.html#cut-regions
https://yt-project.org/
http://yt-project.org/docs/dev/analyzing/objects.html#data-objects

ytree Documentation, Release 3.0.0

(continued from previous page)

>>> ds = a.ytds
>>> sphere = ds.sphere(ds.domain_center, (5, "Mpc"))
>>> print (sphere["halos", "mass"])

These data containers can then be given to the get_nodes_from_selection function to get the tree nodes for
all halos within the container.

>>> sphere = ds.sphere(ds.domain_center, (5, "Mpc"))
>>> for node in a.get_nodes_from_selection(sphere):
... print (node["position"])

2.6 Fields in ytree

ytree supports multiple types of fields, each representing numerical values associated with each halo in the Arbor.
These include the native fields stored on disk, alias fields, derived fields, and analysis fields.

2.6.1 The Field Info Container

Each Arbor contains a dictionary, called field_info, with relevant information for each available field. This
information can include the units, type of field, any dependencies or aliases, and things relevant to reading the data
from disk.

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> print (a.field_info["Rvir"])
{'description': 'Halo radius (kpc/h comoving).', 'units': 'kpc/h ', 'column': 11,
'aliases': ['virial_radius']}

>>> print (a.field_info["mass"])
{'type': 'alias', 'units': 'Msun', 'dependencies': ['Mvir']}

2.6.2 Fields on Disk

Every field stored in the dataset’s files should be available within the Arbor. The field_list contains a list of all
fields on disk with their native names.

>>> print (a.field_list)
['scale', 'id', 'desc_scale', 'desc_id', 'num_prog', ...]

2.6.3 Alias Fields

Because the various dataset formats use different naming conventions for similar fields, ytree allows fields to be
referred to by aliases. This allows for a universal set of names for the most common fields. Many are added by default,
including “mass”, “virial_radius”, “position_<xyz>”, and “velocity_<xyz>”. The list of available alias and derived
fields can be found in the derived_field_list.

>>> print (a.derived_field_list)
['uid', 'desc_uid', 'scale_factor', 'mass', 'virial_mass', ...]

Additional aliases can be added with add_alias_field.

2.6. Fields in ytree 19

ytree Documentation, Release 3.0.0

>>> a.add_alias_field("amount_of_stuff", "mass", units="kg")
>>> print (a["amount_of_stuff"])
[1.30720461e+45, 1.05085632e+45, 1.03025691e+45, ...
1.72691772e+42, 1.72691772e+42, 1.72691772e+42]) kg

2.6.4 Derived Fields

Derived fields are functions of existing fields, including other derived and alias fields. New derived fields are created
by providing a defining function and calling add_derived_field.

>>> def potential_field(field, data):
... # data.arbor points to the parent Arbor
... return data["mass"] / data["virial_radius"]
...
>>> a.add_derived_field("potential", potential_field, units="Msun/Mpc")
[2.88624262e+14 2.49542426e+14 2.46280488e+14, ...
3.47503685e+12 3.47503685e+12 3.47503685e+12] Msun/Mpc

Field functions should take two arguments. The first is a dictionary that will contain basic information about the field,
such as its name. The second argument represents the data container for which the field will be defined. It can be
used to access field data for any other available field. This argument will also have access to the parent Arbor as
data.arbor.

2.6.5 Vector Fields

For fields that have x, y, and z components, such as position, velocity, and angular momentum, a single field can be
queried to return an array with all the components. For example, for fields named “position_x”, “position_y”, and
“position_z”, the field “position” will return the full vector.

>>> print (a["position"])
[[0.0440018, 0.0672202, 0.9569643],
[0.7383264, 0.1961563, 0.0238852],
[0.7042797, 0.6165487, 0.500576],
...
[0.1822363, 0.1324423, 0.1722414],
[0.8649974, 0.4718005, 0.7349876]]) unitary

A list of defined vector fields can be seen by doing:

>>> print (a.field_info.vector_fields)
('position', 'velocity', 'angular_momentum')

For all vector fields, a “_magnitude” field also exists, defined as the quadrature sum of the components.

>>> print (a["velocity_magnitude"])
[488.26936644 121.97143067 146.81450507, ...

200.74057711 166.13782652 529.7336846] km/s

Only specifically registered fields will be available as vector fields. For example, saved Analysis Fields with x,y,z
components will not automatically be available. However, vector fields can be created with the add_vector_field
function.

>>> a.add_vector_field("thing")

The above example assumes that fields named “thing_x”, “thing_y”, and “thing_z” already exist.

20 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

2.6.6 Analysis Fields

Analysis fields provide a means for saving the results of complicated analysis for any halo in the Arbor. This would
be operations beyond derived fields, for example, things that might require loading the original simulation snapshots.
New analysis fields are created with add_analysis_field and are initialized to zero.

>>> a.add_analysis_field("saucer_sections", units="m**2")
>>> my_tree = a[0]
>>> print (my_tree["tree", "saucer_sections"])
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0.,] m**2
>>> import numpy as np
>>> for halo in my_tree["tree"]:
... halo["saucer_sections"] = np.random.random() # complicated analysis
...
>>> print (my_tree["tree", "saucer_sections"])
[0.33919263 0.79557815 0.38264336 0.53073945 0.09634924 0.6035886, ...

0.9506636 0.9094426 0.85436984 0.66779632 0.58816873] m**2

Analysis fields will be saved when the TreeNode objects that have been analyzed are saved with save_arbor or
save_tree.

>>> my_trees = a[:] # all trees
>>> for my_tree in my_trees:
... # do analysis...
>>> a.save_arbor(trees=my_trees)

Note: Trees with altered analysis fields must be provided explicitly to save_arbor in order for fields to be saved
properly.

Re-saving Analysis Fields

All analysis fields are saved to sidecar files with the “-analysis” keyword appended to them. They can be altered and
the arbor re-saved as many times as you like. In the very specific case of re-saving all trees and not providing a new
filename or custom list of fields (as in the example above), analysis fields will be saved in place (i.e., over-writing the
“-analysis” files). The conventional on-disk fields will not be re-saved as they cannot be altered.

2.7 Plotting Merger Trees

Some relatively simple visualizations of merger trees can be made with the TreePlot command.

2.7.1 Additional Dependencies

Making merger tree plots with ytree requires the pydot and graphviz packages. pydot can be installed with pip
and the graphviz website provides a number of installation options.

2.7.2 Making Tree Plots

The TreePlot command can be used to create a digraph depicting halos as filled circles with sizes proportional to
their mass. The main progenitor line will be colored red.

2.7. Plotting Merger Trees 21

https://pypi.org/project/pydot/
https://www.graphviz.org/
https://www.graphviz.org/
https://en.wikipedia.org/wiki/Directed_graph

ytree Documentation, Release 3.0.0

>>> import ytree
>>> a = ytree.load("ahf_halos/snap_N64L16_000.parameter",
... hubble_constant=0.7)
>>> p = ytree.TreePlot(a[0], dot_kwargs={'rankdir': 'LR', 'size': '"12,4"'})
>>> p.save('tree.png')

Plot Modifications

Four TreePlot attributes can be set to modify the default plotting behavior. These are:

• size_field: The field to determine the size of each circle. Default: ‘mass’.

• size_log: Whether to scale circle sizes based on log of size field. Default: True.

• min_mass: The minimum halo mass to be included in the plot. If given as a float, units are assumed to be Msun.
Default: None.

• min_mass_ratio: The minimum ratio between a halo’s mass and the mass of the main halo to be included in the
plot. Default: None.

>>> import ytree
>>> a = ytree.load("ahf_halos/snap_N64L16_000.parameter",
... hubble_constant=0.7)
>>> p = ytree.TreePlot(a[0], dot_kwargs={'rankdir': 'LR', 'size': '"12,4"'})
>>> p.min_mass_ratio = 0.01
>>> p.save('tree_small.png')

Customizing Node Appearance

The appearance of the nodes can be customized by providing a function that returns a dictionary of keywords that will
be used to create the pydot node. This should accept a single argument that is a TreeNode object representing the
halo to be plotted. For example, the following function will add labels of the halo id and mass and make the node
shape square. It will also color the most massive progenitor red.

def my_node(halo):
prog = list(halo.find_root()['prog', 'uid'])
if halo['uid'] in prog:

color = 'red'
else:

color = 'black'

label = \
"""
id: %d
mass: %.2e Msun
""" % (halo['uid'], halo['mass'].to('Msun'))

(continues on next page)

22 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

(continued from previous page)

my_kwargs = {"label": label, "fontsize": 8,
"shape": "square", "color": color}

return my_kwargs

This function is then provided with the node_function keyword.

>>> p = ytree.TreePlot(tree, dot_kwargs={'rankdir': "BT"},
... node_function=my_node)
>>> p.save('tree_custom_node.png')

Customizing Edge Appearance

The edges of the plot are the lines connecting each of the nodes. Similar to the nodes, their appearance can be
customized by providing a function that returns a dictionary of keywords that will be used to create the pydot edge.
This should accept two TreeNode arguments representing the ancestor and descendent halos being connected by the
edge. The example below colors the edges blue when the descendent is less massive than its ancestor and green when
the descendent is more than 10 times more massive than its ancestor.

def my_edge(ancestor, descendent):
if descendent['mass'] < ancestor['mass']:

color = 'blue'
elif descendent['mass'] / ancestor['mass'] > 10:

color = 'green'
else:

color = 'black'

(continues on next page)

2.7. Plotting Merger Trees 23

ytree Documentation, Release 3.0.0

(continued from previous page)

my_kwargs = {"color": color, "penwidth": 5}
return my_kwargs

This function is then provided with the edge_function keyword.

>>> p = ytree.TreePlot(tree, dot_kwargs={'rankdir': "BT"},
... node_function=my_node,
... edge_function=my_edge)
>>> p.save('tree_custom_edge.png')

Supported Output Formats

Plots can be saved to any format supported by graphviz by giving a filename with the appropriate extension. See
here for a list of currently supported formats.

2.8 Parallel Computing with ytree

At present, ytree itself is not parallelized, although parallelizing with Dask is on the development roadmap for ytree
3.1. However, parallel merger tree analysis can be accomplished using the parallel computing capabilities of yt.

Note: Before reading this section, consult the Parallel Computation With yt section of the yt documentation to learn
how to configure yt for running in parallel.

24 Chapter 2. Table of Contents

https://www.graphviz.org/doc/info/output.html
https://dask.org/
http://yt-project.org/docs/dev/analyzing/parallel_computation.html#parallel-computation
http://yt-project.org/docs/dev/analyzing/parallel_computation.html#parallel-computation

ytree Documentation, Release 3.0.0

ytree can be run in parallel by making use of the parallel_objects function in yt. This functionality is built
on MPI, so it can be used to parallelize analysis across multiple nodes of a distributed computing system. This function
powers the two primary strategies for parallelizing merger tree analysis: Parallelizing over Trees and Parallelizing over
Halos. These two can also be combined for Multi-level Parallelism. The most efficient strategy will depend on the
nature of your analysis.

In all cases, scripts must be run with mpirun to work in parallel. For example, to run on 4 processors, do:

$ mpirun -np 4 python my_analysis.py

where “my_analysis.py” is the name of the script.

2.8.1 Parallelizing over Trees

In this strategy, parallelism is achieved by distributing the list of trees to be analyzed over the available processors.
Each processor will work on a single tree in serial. Results for all trees will be collected at the end and saved by the
root process (i.e., the process with rank 0). In this example, the “analysis” performed will be facilitated through an
Analysis Field, called “test_field”. However, the analysis can be anything your heart desires.

All parallel computation in yt begins by importing yt and calling the enable_parallelism function.

import yt
yt.enable_parallelism()
import ytree

We will then load some data and create an analysis field.

a = ytree.load("arbor/arbor.h5")
if "test_field" not in a.field_list:

a.add_analysis_field("test_field", default=-1, units="Msun")

The serial version of our analysis contains two loops, one over all trees and another over all halos in each tree. It looks
likes the following:

for my_tree in a[:]:
yt.mylog.info(f"Analyzing tree: {my_tree}.")
for my_halo in my_tree["forest"]:

my_halo["test_field"] = 2 * my_halo["mass"] # this is our analysis

To parallelize this loop over all trees, we insert a call to parallel_objects.

arbor_storage = {}
for tree_store, my_tree in yt.parallel_objects(a[:], storage=arbor_storage):

yt.mylog.info(f"Analyzing tree: {my_tree}.")
for my_halo in my_tree["forest"]:

my_halo["test_field"] = 2 * my_halo["mass"] # this is our analysis

tree_store.result = my_tree.field_data["test_field"]

As we will see below, the arbor_storage dictionary created at the top will be used after the loop to combine the
results on the root processor. For each iteration of the loop, we are given a local storage object, called tree_store.
All results we want to return to the root process are assigned to tree_store.result. In the above example, the
field_data attribute associated with my_tree is a dictionary containing recently queried field data, including our
new “test_field”. We will assign the entire array of “test_field” values to the result storage. Using yt.mylog.info
to print will show us which processor is doing what.

Now, we combine the results on the root process and save the new field.

2.8. Parallel Computing with ytree 25

http://yt-project.org/docs/dev/reference/api/yt.utilities.parallel_tools.parallel_analysis_interface.html#yt.utilities.parallel_tools.parallel_analysis_interface.parallel_objects
https://en.wikipedia.org/wiki/Message_Passing_Interface
http://yt-project.org/docs/dev/reference/api/yt.utilities.parallel_tools.parallel_analysis_interface.html#yt.utilities.parallel_tools.parallel_analysis_interface.enable_parallelism
http://yt-project.org/docs/dev/reference/api/yt.utilities.parallel_tools.parallel_analysis_interface.html#yt.utilities.parallel_tools.parallel_analysis_interface.parallel_objects

ytree Documentation, Release 3.0.0

if yt.is_root():
my_trees = []
for i, my_tree in enumerate(a[:]):

my_tree.field_data["test_field"] = arbor_storage[i]
my_trees.append(my_tree)

a.save_arbor(trees=my_trees)

The is_root function can be used to figure out the root process of a group. By default, entries in the
arbor_storage dictionary are stored by the index of the loop, so for example, entry 0 will correspond to the
first iteration of the original parallel loop.

2.8.2 Parallelizing over Halos

In this strategy, multiple processors work together on a single tree by splitting up the halos in that tree. This time, we
leave the outer loop over all trees in serial and add parallel_objects to the inner loop.

my_trees = []
for my_tree in a[:]:

if yt.is_root():
yt.mylog.info(f"Analyzing tree: {my_tree}.")

tree_storage = {}
for halo_store, my_halo in yt.parallel_objects(

my_tree["forest"], storage=tree_storage):
halo_store.result_id = my_halo.tree_id
halo_store.result = 2 * my_halo["mass"] # this is our analysis

Just as before, we create a dictionary, called tree_storage, that will be used to combine the results at the end of
the loop. We use the local results storage, here called halo_store, to store both the result that we want to keep and
an id using halo_store.result_id. We set the result id explicitly to help re-assemble the results in the correct
order. For example, this will ensure correct collection of results when getting nodes by “tree” or “prog” as well as
“forest”. Now, we collect the results for the tree.

my_trees = []
this is the outer loop from above
for my_tree in a[:]:

if yt.is_root():
yt.mylog.info(f"Analyzing tree: {my_tree}.")

code block from above

if yt.is_root():
for tree_id, result in tree_storage.items():

my_halo = my_tree.get_node("forest", tree_id)
my_halo["test_field"] = result

my_trees.append(my_tree)

save the trees
if yt.is_root():

a.save_arbor(trees=my_trees)

Note, the above code is inside the outer loop over all trees shown above. Note as well, to ensure that the tree has all of
the new values for the “test_field”, we only need to loop over all the relevant halos and assign the field value to them.
The rest happens under the hood.

26 Chapter 2. Table of Contents

http://yt-project.org/docs/dev/reference/api/yt.funcs.html#yt.funcs.is_root
http://yt-project.org/docs/dev/reference/api/yt.utilities.parallel_tools.parallel_analysis_interface.html#yt.utilities.parallel_tools.parallel_analysis_interface.parallel_objects

ytree Documentation, Release 3.0.0

2.8.3 Multi-level Parallelism

With some care, nested loops with calls to parallel_objects can be created to parallelize over both trees and
halos within a tree. By default, parallel_objects will split the work evenly among all processors, assigning one
loop iteration to a single processor. However, the njobs keyword allows us to set explicitly the number of process
groups over which to divide up work. In the example below, we restrict the outer loop to two process groups by setting
njobs=2. For example, if we are running with four processors, each iteration of the outer loop will be assigned to
two processors working together as a group.

arbor_storage = {}
for tree_store, my_tree in yt.parallel_objects(

a[:], storage=arbor_storage, njobs=2):

if yt.is_root():
yt.mylog.info(f"Analyzing tree: {my_tree}.")

tree_storage = {}
for halo_store, my_halo in yt.parallel_objects(

my_tree["forest"], storage=tree_storage):
halo_store.result_id = my_halo.tree_id
halo_store.result = 2 * my_halo["mass"] # this is our analysis

combine results for this tree
if yt.is_root():

for tree_id, result in tree_storage.items():
my_halo = my_tree.get_node("forest", tree_id)
my_halo["test_field"] = result

tree_store.result = my_tree.field_data["test_field"]
else:

tree_store.result_id = None

combine results for all trees
if yt.is_root():

my_trees = []
for i, my_tree in enumerate(a[:]):

my_tree.field_data["test_field"] = arbor_storage[i]
my_trees.append(my_tree)

a.save_arbor(trees=my_trees)

Note, that we use yt.is_root() inside the outer loop to combine results from the inner loop. This is allowed
because is_root will return True for the root of a process group, not just the global root process. Within the outer
loop, the root is the first process of each of the two groups of two processes. Add some calls to yt.mylog.info to
prove this to yourself.

The code above looks mostly like a combination of the previous two examples, but with a few notable differences.
First, the addition of the njobs keyword in the outer loop. Second, when combining the results of the inner loop over
all halos, if we are NOT the root process, we set tree_store.result_id to None. Without this, the results from
the non-root processes (that we are not actually collecting) will clobber those from the root processes and nothing will
be saved.

2.8.4 Saving Intermediate Results

Often the analysis is computationally expensive enough to want to save results as they come instead of waiting for all
halos to be analyzed. This can be useful if results require a lot of memory or the code takes a long time to run and you
would like to restart from a partially completed state. In the example below, analysis is performed on blocks of eight
trees at a time. Each block is done in parallel, the results are saved, and analysis resumes.

2.8. Parallel Computing with ytree 27

http://yt-project.org/docs/dev/reference/api/yt.utilities.parallel_tools.parallel_analysis_interface.html#yt.utilities.parallel_tools.parallel_analysis_interface.parallel_objects
http://yt-project.org/docs/dev/reference/api/yt.utilities.parallel_tools.parallel_analysis_interface.html#yt.utilities.parallel_tools.parallel_analysis_interface.parallel_objects
http://yt-project.org/docs/dev/reference/api/yt.funcs.html#yt.funcs.is_root

ytree Documentation, Release 3.0.0

a = ytree.load("arbor/arbor.h5")
if "test_field" not in a.field_list:

a.add_analysis_field("test_field", default=-1, units="Msun")

block_size = 8
my_trees = list(a[:])
n_blocks = int(np.ceil(len(my_trees) / block_size))

for ib in range(n_blocks):
start = ib * block_size
end = min(start + block_size, len(my_trees))

tree_storage = {}
for tree_store, itree in yt.parallel_objects(

range(start, end), storage=tree_storage, dynamic=False):
my_tree = my_trees[itree]

for my_halo in my_tree["tree"]:
my_halo["test_field"] = 2 * my_halo["mass"]

tree_store.result_id = itree
tree_store.result = my_tree.field_data["test_field"]

if yt.is_root():
re-assemble results on root processor
for itree, results in sorted(tree_storage.items()):

my_tree = my_trees[itree]
my_tree.field_data["test_field"] = results

a.save_arbor(trees=my_trees)

now reload it and restore the list of trees
a = ytree.load(a.filename)
my_trees = list(a[:])

There are some notable differences between this example and those above. First, we explicitly create a list of
trees with my_trees = list(a[:]) so we can restore it after saving and reloading. Second, we loop over
range(start, end) instead of over trees so we can loop over a block of trees at a time.

Like with most things, more is possible than what is shown here and there are other ways to do what is demonstrated.
Parallel computing can be very satisfying. Enjoy!

2.9 Example Applications

Below are some examples of things one might want to do with merger trees that demonstrate various ytree functions.
If you have made something interesting, please consider contributing it.

2.9.1 Halo Age

One way to define the age of a halo is by calculating the time when it reached 50% of its current mass. In the example
below, this time is calculated by linearly interpolating from the mass of the main progenitor as a function of time.

import numpy as np

(continues on next page)

28 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

(continued from previous page)

def t50(tree):
main progenitor masses
pmass = tree['prog', 'mass']

mh = 0.5 * tree['mass']
m50 = pmass <= mh

if not m50.any():
th = tree['time']

else:
ptime = tree['prog', 'time']
linearly interpolate
i = np.where(m50)[0][0]
slope = (ptime[i-1] - ptime[i]) / (pmass[i-1] - pmass[i])
th = slope * (mh - pmass[i]) + ptime[i]

return th

Now we’ll run it on the first tree in the data set.

>>> import ytree
>>> a = ytree.load('consistent_trees/tree_0_0_0.dat')
>>> my_tree = a[0]
>>> print (t50(my_tree).to('Gyr'))
7.2325572094782515 Gyr

2.9.2 Significance

Brought to you by John Wise, a halo’s significance is calculated by recursively summing over all ancestors the mass
multiplied by the time between snapshots. When determining the main progenitor of a halo, the significance measure
will select for the ancestor with the deeper history instead of just the higher mass. This can be helpful in cases of near
1:1 mergers.

Below, we define a function that calculates the significance for every halo in a single tree.

def get_significance(tree):
if tree.descendent is None:

dt = 0. * tree['time']
else:

dt = tree.descendent['time'] - tree['time']

sig = tree['mass'] * dt
if tree.ancestors is not None:

for anc in tree.ancestors:
sig += get_significance(anc)

tree['significance'] = sig
return sig

We now add a new analysis field to save the significance values for all trees. Then, we will save the arbor with the
newly added significance field.

>>> import ytree
>>> a = ytree.load('consistent_trees/tree_0_0_0.dat')
>>> a.add_analysis_field('significance', 'Msun*Myr')

(continues on next page)

2.9. Example Applications 29

ytree Documentation, Release 3.0.0

(continued from previous page)

>>> my_trees = list(a[:])
>>> for tree in my_trees:

get_significance(tree)
>>> a.save_arbor(filename='sig_tree', trees=my_trees)

Finally, we can load the new data set and use the significance field to select the main progenitors.

>>> import ytree
>>> a = ytree.load('sig_tree/sig_tree.h5')
>>> a.set_selector('max_field_value', 'significance')
>>> print (a[0]['prog'])
[TreeNode[12900] TreeNode[12539] TreeNode[12166] TreeNode[11796] ...
TreeNode[105] TreeNode[62]]

2.10 Community Code of Conduct

ytree is a project by members of the yt community. As such, we stand by the yt Community Code of Conduct.

Below is the ytree version of this code.

ytree Community Code of Conduct

The community of participants in open source Scientific projects is made up of members from around the globe with
a diverse set of skills, personalities, and experiences. It is through these differences that our community experiences
success and continued growth. We expect everyone in our community to follow these guidelines when interacting
with others both inside and outside of our community. Our goal is to keep ours a positive, inclusive, successful, and
growing community.

As members of the community,

• We pledge to treat all people with respect and provide a harassment- and bullying-free environment, regardless
of sex, sexual orientation and/or gender identity, disability, physical appearance, body size, race, nationality,
ethnicity, and religion. In particular, sexual language and imagery, sexist, racist, or otherwise exclusionary jokes
are not appropriate.

• We pledge to respect the work of others by recognizing acknowledgment/citation requests of original authors.
As authors, we pledge to be explicit about how we want our own work to be cited or acknowledged.

• We pledge to welcome those interested in joining the community, and realize that including people with a
variety of opinions and backgrounds will only serve to enrich our community. In particular, discussions relating
to pros/cons of various technologies, programming languages, and so on are welcome, but these should be done
with respect, taking proactive measure to ensure that all participants are heard and feel confident that they can
freely express their opinions.

• We pledge to welcome questions and answer them respectfully, paying particular attention to those new to the
community. We pledge to provide respectful criticisms and feedback in forums, especially in discussion threads
resulting from code contributions.

• We pledge to be conscientious of the perceptions of the wider community and to respond to criticism respect-
fully. We will strive to model behaviors that encourage productive debate and disagreement, both within our
community and where we are criticized. We will treat those outside our community with the same respect as
people within our community.

We pledge to help the entire community follow the code of conduct, and to not remain silent when we see violations
of the code of conduct. We will take action when members of our community violate this code such as contacting the
project manager, Britton Smith (brittonsmith@gmail.com). All emails will be treated with the strictest confidence or
talking privately with the person.

30 Chapter 2. Table of Contents

http://yt-project.org/community.html
http://yt-project.org/community.html#codeofconduct
mailto:brittonsmith@gmail.com

ytree Documentation, Release 3.0.0

This code of conduct applies to all community situations online and offline, including mailing lists, forums, social
media, conferences, meetings, associated social events, and one-to-one interactions.

This Community Code of Conduct comes the yt Community Code
of Conduct, which was adapted from the Astropy
Community Code of Conduct, which was partially inspired by the PSF code of conduct.

2.11 Contributing to ytree

ytree is a community project and it will be better with your contribution.

Contributions are welcome in the form of code, documentation, or just about anything. If you’re interested in getting
involved, please do!

ytree is developed using the same conventions as yt. The yt Developer Guide is a good reference for code style,
communication with other developers, working with git, and issuing pull requests. For information specific to ytree,
such as testing and adding support for new file formats, see the ytree Developer Guide.

If you’d like to know more, contact Britton Smith (brittonsmith@gmail.com) or come by the #ytree channel on the yt
project Slack.

You can also find help on the yt developers list.

2.12 Developer Guide

ytree is developed using the same conventions as yt. The yt Developer Guide is a good reference for code style,
communication with other developers, working with git, and issuing pull requests. Below is a brief guide of aspects
that are specific to ytree.

2.12.1 Contributing in a Nutshell

Step zero, get out of that nutshell!

After that, the process for making contributions to ytree is roughly as follows:

1. Fork the main ytree repository.

2. Create a new branch.

3. Make changes.

4. Run tests. Return to step 3, if needed.

5. Issue pull request.

The yt Developer Guide and github documentation will help with the mechanics of git and pull requests.

2.12.2 Testing

The ytree source comes with a series of tests that can be run to ensure nothing unexpected happens after changes
have been made. These tests will automatically run when a pull request is issued or updated, but they can also be run
locally very easily. At present, the suite of tests for ytree takes about three minutes to run.

2.11. Contributing to ytree 31

http://yt-project.org/community.html
http://www.astropy.org/about.html#codeofconduct
http://yt-project.org/docs/dev/developing/index.html
http://ytree.readthedocs.io/en/latest/Developing.html
mailto:brittonsmith@gmail.com
https://yt-project.org/slack.html
https://yt-project.org/slack.html
http://lists.spacepope.org/listinfo.cgi/yt-users-spacepope.org
http://yt-project.org/docs/dev/developing/index.html
https://github.com/ytree-project/ytree
https://yt-project.org/docs/dev/developing/index.html
https://github.com/

ytree Documentation, Release 3.0.0

Testing Data

The first order of business is to obtain the sample datasets. See Sample Data for how to do so. Next, ytree must be
configure to know the location of this data. This is done by creating a configuration file in your home directory at the
location ~/.config/ytree/ytreerc.

$ mkdir -p ~/.config/ytree
$ echo [ytree] > ~/.config/ytree/ytreerc
$ echo test_data_dir = /Users/britton/ytree_data >> ~/.config/ytree/ytreerc
$ cat ~/.config/ytree/ytreerc
[ytree]
test_data_dir = /Users/britton/ytree_data

This path should point to the outer directory containing all the sample datasets.

Installing Development Dependencies

A number of additional packages are required for testing. These can be installed with pip from within the ytree
source by doing:

$ pip install -e .[dev]

To see how these dependencies are defined, have a look at the extras_require keyword argument in the setup.
py file.

Run the Tests

The tests are run from the top level of the ytree source.

$ pytest tests
============================= test session starts ==============================
platform darwin -- Python 3.6.0, pytest-3.0.7, py-1.4.32, pluggy-0.4.0
rootdir: /Users/britton/Documents/work/yt/extensions/ytree/ytree, inifile:
collected 16 items

tests/test_arbors.py
tests/test_flake8.py .
tests/test_saving.py ...
tests/test_treefarm.py ..
tests/test_ytree_1x.py ..

========================= 16 passed in 185.03 seconds ==========================

2.12.3 Adding Support for a New Format

The Arbor class is reasonably generalized such that adding support for a new file format should be relatively straight-
forward. The existing frontends also provide guidance for what must be done. Below is a brief guide for how to
proceed. If you are interested in doing this, we will be more than happy to help!

Where do the files go?

As in yt, the code specific to one file format is referred to as a “frontend”. Within the ytree source, each frontend is
located in its own directory within ytree/frontends. Name your directory using lowercase and underscores and

32 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

put it in there.

To allow your frontend to be directly importable at run-time, add the name to the _frontends list in ytree/
frontends/api.py.

Building Your Frontend

A very good way to build a new frontend is to start with an existing frontend for a similar type of dataset. To see the
variety of examples, consult the Internal Classes section of the API Reference.

To build a new frontend, you will need to make frontend-specific subclasses for a few components. A straightforward
way to do this is to start with the script below, loading your data with it. Each line will run correctly after a distinct
phase of the implementation is completed. As you progress, the next function needing implemented will raise a
NotImplementedError exception, indicating what should be done next.

import ytree

Arbor subclass with working _is_valid function
a = ytree.load(<your data>)

Recognizing the available fields
print (a.field_list)

Calculate the number of trees in the dataset
print (a.size)

Create root TreeNode objects
my_tree = a[0]
print (my_tree)

Query fields for individual trees
print (my_tree['mass'])

Query fields for a whole tree
print (my_tree['tree', 'mass'])

Create TreeNodes for whole tree
for node in my_tree['tree']:

print (node)

Query fields for all root nodes
print (a['mass'])

Putting it all together
a.save_arbor()

The components and the files in which they belong are:

1. The Arbor itself (arbor.py).

2. The file i/o (io.py).

3. Recognizing frontend-specific fields (fields.py).

In addition to this, you will need to add a file called __init__.py, which will allow your code to be imported. This
file should minimally import the frontend-specific Arbor class. For example, the consistent-trees __init__.py
looks like this:

2.12. Developer Guide 33

ytree Documentation, Release 3.0.0

from ytree.frontends.consistent_trees.arbor import \
ConsistentTreesArbor

The _is_valid Function

Within every Arbor subclass should appear a method called _is_valid. This function is used by load to deter-
mine if the provided file is the correct type. This function can examine the file’s naming convention and/or open it and
inspect its contents, whatever is required to uniquely identify your frontend. Have a look at the various examples.

Two Types of Arbors

There are generally two types of merger tree data that ytree ingests:

1. all merger tree data (full trees, halos, etc.) contained within a single file. These include the consistent-trees,
consistent-trees-hdf5, lhalotree, and ytree frontends.

2. halos in files grouped by redshift (halo catalogs) that contain the halo id for the descendent halo which lives in the
next catalog. An example of this is the rockstar frontend.

Depending on your case, different base classes should be subclassed. This is discussed below. There are also hybrid
formats that use both merger tree and halo catalog files together. An example of this is the ahf (Amiga Halo Finder)
frontend.

Merger Tree Data in One File (or a few)

If this is your case, then the consistent-trees and “ytree” frontends are the best examples to follow.

In arbor.py, your subclass of Arbor should implement two functions, _parse_parameter_file and
_plant_trees.

_parse_parameter_file: This is the first thing called when your dataset is loaded. It is responsible for deter-
mining things like box size, cosmological parameters, and the list of fields.

_plant_trees: This function is responsible for creating arrays of the data required to build all the root TreeNode
objects in the Arbor. The names of these attributes are declared in the _node_io_attrs attribute. For example,
the ConsistentTreesHDF5Arbor class names three required attributes: _fi, the data file number in which this
tree lives; _si, the starting index of the section in the data array corresponding to this tree; and _ei, the ending index
in the data array.

In io.py, you will implement the machinery responsible for reading field data from disk. You must create a subclass
of the TreeFieldIO class and implement the _read_fields function. This function accepts a single root node
(a TreeNode that is the root of a tree) and a list of fields and should return a dictionary of NumPy arrays for each
field.

Halo Catalog-style Data

If this is your case, then the rockstar and treefarm frontends are the best examples to follow.

For this type of data, you will subclass the CatalogArbor class, which is itself a subclass of Arbor designed for
this type of data.

In arbor.py, your subclass should implement two functions, _parse_parameter_file and
_get_data_files. The purpose of _parse_parameter_file is described above.

34 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

_get_data_files: This type of data is usually loaded by providing one of the set of files. This function needs to
figure out how many other files there are and their names and construct a list to be saved.

In io.py, you will create a subclass of CatalogDataFile and implement two functions: _parse_header and
_read_fields.

_parse_header: This function reads any metadata specific to this halo catalog. For exmaple, you might get the
current redshift here.

_read_fields: This function is responsible for reading field data from disk. This should minimally take a list
of fields and return a dictionary with NumPy arrays for each field for all halos contained in the file. It should also,
optionally, take a list of TreeNode instances and return fields only for them.

Field Units and Aliases (fields.py)

The FieldInfoContainer class holds information about field names and units. Your subclass can define two
tuples, known_fields and alias_fields. The known_fields tuple is used to set units for fields on disk.
This is useful especially if there is no way to get this information from the file. The convention for each entry is (name
on disk, units).

By creating aliases to standardized names, scripts can be run on multiple types of data with little or no alteration for
frontend-specific field names. This is done with the alias_fields tuple. The convention for each entry is (alias
name, name on disk, field units).

from ytree.data_structures.fields import \
FieldInfoContainer

class NewCodeFieldInfo(FieldInfoContainer):
known_fields = (

name on disk, units
("Mass", "Msun/h"),
("PX", "kpc/h"),

)

alias_fields = (
alias name, name on disk, units for alias
("mass", "Mass", "Msun"),
("position_x", "PX", "Mpc/h"),
...

)

You made it!

That’s all there is to it! Now you too can do whatever it is people do with merger trees. There are probably important
things that were left out of this document. If you find any, please consider making an addition or opening an issue. If
you’re stuck anywhere, don’t hesitate to ask for help. If you’ve gotten this far, we really want to see you make it to the
finish!

Everyone Loves Samples

It would be especially great if you could provide a small sample dataset with your new frontend, something less
than a few hundred MB if possible. This will ensure that your new frontend never gets broken and will also help
new users get started. Once you have some data, make an addition to the arbor tests by following the example in
tests/test_arbors.py. Then, contact Britton Smith to arrange for your sample data to be added to the ytree
data collection on the yt Hub.

2.12. Developer Guide 35

https://girder.hub.yt/#collection/59835a1ee2a67400016a2cda
https://girder.hub.yt/#collection/59835a1ee2a67400016a2cda
https://girder.hub.yt/

ytree Documentation, Release 3.0.0

Ok, now you’re totally done. Take the rest of the afternoon off.

2.13 Help

If you encounter problems, we want to help and there are lots of places to get help. As an extension of the yt project,
we are members of the yt community. There is a dedicated #ytree channel on the yt project Slack and questions can
also be posted to the yt users mailing list. Bugs and feature requests can also be posted on the ytree issues page.

See you out there!

2.14 Citing ytree

If you use ytree in your work, please cite the following:

Smith et al., (2019). ytree: A Python package for analyzing merger trees. Journal of Open Source Software, 4(44),
1881, https://doi.org/10.21105/joss.01881

For BibTeX users:

@article{ytree,
doi = {10.21105/joss.01881},
url = {https://doi.org/10.21105/joss.01881},
year = {2019},
month = {dec},
publisher = {The Open Journal},
volume = {4},
number = {44},
pages = {1881},
author = {Britton D. Smith and Meagan Lang},
title = {ytree: A Python package for analyzing merger trees},
journal = {Journal of Open Source Software}

}

If you would like to also cite the specific version of ytree used in your work, include the following reference:

@software{ytree_2_3,
author = {Britton Smith and

Meagan Lang},
title = {ytree: A Python package for analyzing merger trees},
month = dec,
year = 2019,
publisher = {Zenodo},
version = {ytree-2.3.0},
doi = {10.5281/zenodo.3580978},
url = {https://doi.org/10.5281/zenodo.3580978}

}

2.15 Reference

Below are some reference materials for ytree, including API documentation for all available functionality and a log
of changes from each stable release.

36 Chapter 2. Table of Contents

https://yt-project.org/
https://yt-project.org/slack.html
https://mail.python.org/mailman3/lists/yt-users.python.org
https://github.com/ytree-project/ytree/issues
https://doi.org/10.21105/joss.01881

ytree Documentation, Release 3.0.0

2.15.1 API Reference

Working with Merger Trees

The load can load all supported merger tree formats. Once loaded, the save_arbor and save_tree functions
can be used to save the entire arbor or individual trees.

load(filename[, method]) Load an Arbor, determine the type automatically.
Arbor(filename) Base class for all Arbor classes.
add_alias_field(alias, field[, units, force_add]) Add a field as an alias to another field.
add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis operations.

add_derived_field(name, function[, units, . . .]) Add a field that is a function of other fields.
add_vector_field(name) Add vector fields for a set of x,y,z component fields.
save_arbor(**kwargs) Save the arbor to a file.
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
TreeNode(uid[, arbor, root]) Class for objects stored in Arbors.
get_leaf_nodes([selector]) Get all leaf nodes from the tree of which this is the head.
get_root_nodes() Get all root nodes from the forest to which this node

belongs.
get_node(selector, index) Get a single TreeNode from a tree.
save_tree([filename, fields]) Save the tree to a file.
TreeNodeSelector(function[, args, kwargs]) The TreeNodeSelector is responsible for choosing

which one of a halo’s ancestors to return when query-
ing the line of main progenitors for a halo.

set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.
TreeNodeSelector(function[, args, kwargs]) The TreeNodeSelector is responsible for choosing

which one of a halo’s ancestors to return when query-
ing the line of main progenitors for a halo.

add_tree_node_selector(name, function) Add a TreeNodeSelector to the registry of known selec-
tors, so they can be chosen with set_selector.

max_field_value(ancestors, field) Return the TreeNode with the maximum value of the
given field.

min_field_value(ancestors, field) Return the TreeNode with the minimum value of the
given field.

get_yt_selection([above, below, equal, . . .]) Get a selection of halos meeting given criteria.
get_nodes_from_selection(container) Generate TreeNodes from a yt data container.
ytds Load as a yt dataset.

ytree.data_structures.load.load

ytree.data_structures.load.load(filename, method=None, **kwargs)
Load an Arbor, determine the type automatically.

Parameters

• filename (string) – Input filename.

• method (optional, string) – The type of Arbor to be loaded. Existing types are:
ConsistentTrees, Rockstar, TreeFarm, YTree. If not given, the type will be determined based
on characteristics of the input file.

2.15. Reference 37

ytree Documentation, Release 3.0.0

• kwargs (optional, dict) – Additional keyword arguments are passed to _is_valid
and the determined type.

Returns

Return type Arbor

Examples

>>> import ytree
>>> # saved Arbor (ytree format)
>>> a = ytree.load("arbor/arbor.h5")
>>> # Amiga Halo Finder
>>> a = ytree.load("ahf_halos/snap_N64L16_000.parameter",
... hubble_constant=0.7)
>>> # consistent-trees
>>> a = ytree.load("tiny_ctrees/locations.dat")
>>> a = ytree.load("consistent_trees/tree_0_0_0.dat")
>>> a = ytree.load("ctrees_hlists/hlists/hlist_0.12521.list")
>>> # consistent-trees-hdf5
>>> a = ytree.load("consistent_trees_hdf5/soa/forest.h5")
>>> # LHaloTree
>>> a = ytree.load("my_halos/trees_063.0")
>>> # LHaloTree-hdf5
>>> a = ytree.load("TNG50-4-Dark/trees_sf1_099.0.hdf5",
... box_size=35, hubble_constant=0.6774,
... omega_matter=0.3089, omega_lambda=0.6911)
>>> # Moria
>>> a = ytree.load("moria/moria_tree_testsim050.hdf5")
>>> # Rockstar
>>> a = ytree.load("rockstar_halos/out_0.list")
>>> # treefarm
>>> a = ytree.load("my_halos/fof_subhalo_tab_025.0.h5")
>>> # TreeFrog
>>> a = ytree.load("treefrog/VELOCIraptor.tree.t4.0-131.walkabletree.sage.
→˓forestID.foreststats.hdf5")

ytree.data_structures.arbor.Arbor

class ytree.data_structures.arbor.Arbor(filename)
Base class for all Arbor classes.

Loads a merger-tree output file or a series of halo catalogs and create trees, stored in an array in trees. Arbors
can be saved in a universal format with save_arbor. Also, provide some convenience functions for creating
unyt_arrays and unyt_quantities and a cosmology calculator.

__init__(filename)
Initialize an Arbor given an input file.

Methods

__init__(filename) Initialize an Arbor given an input file.
Continued on next page

38 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Table 2 – continued from previous page
add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
get_nodes_from_selection(*args,
**kwargs)
get_yt_selection(*args, **kwargs)
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.
save_arbor(**kwargs) Save the arbor to a file.
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds

ytree.data_structures.arbor.Arbor.add_alias_field

Arbor.add_alias_field(alias, field, units=None, force_add=True)
Add a field as an alias to another field.

Parameters

• alias (string) – Alias name.

• field (string) – The field to be aliased.

• units (optional, string) – Units in which the field will be returned.

• force_add (optional, bool) – If True, add field even if it already exists and warn

2.15. Reference 39

ytree Documentation, Release 3.0.0

the user and raise an exception if dependencies do not exist. If False, silently do nothing in
both instances. Default: True.

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> # "Mvir" exists on disk
>>> a.add_alias_field("mass", "Mvir", units="Msun")
>>> print (a["mass"])

ytree.data_structures.arbor.Arbor.add_analysis_field

Arbor.add_analysis_field(name, units, dtype=None, default=0)
Add an empty field to be filled by analysis operations.

Parameters

• name (string) – Field name.

• units (string) – Field units.

• dtype (optional, type) – Data type for field values. If None, the default data type of
the arbor is used. Default: None.

• default (optional, numeric) – Default field value when field is initialized. De-
fault: 0.

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> a.add_analysis_field("robots", "Msun * kpc")
>>> # Set field for some halo.
>>> my_tree = a[0]
>>> my_tree["tree"][7]["robots"] = 1979.816

ytree.data_structures.arbor.Arbor.add_derived_field

Arbor.add_derived_field(name, function, units=None, dtype=None, description=None, vec-
tor_field=False, force_add=True)

Add a field that is a function of other fields.

Parameters

• name (string) – Field name.

• function (callable) – The function to be called to generate the field. This function
should take two arguments, the arbor and the data structure containing the dependent fields.
See below for an example.

• units (optional, string) – The units in which the field will be returned.

• dtype (optional, type) – The data type of the field array. If none, use the default
type set by Arbor._default_dtype.

40 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

• description (optional, string) – A short description of the field.

• vector_field (optional, bool) – If True, field is an xyz vector. Default: False.

• force_add (optional, bool) – If True, add field even if it already exists and warn
the user and raise an exception if dependencies do not exist. If False, silently do nothing in
both instances. Default: True.

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> def _redshift(field, data):
... return 1. / data["scale"] - 1
...
>>> a.add_derived_field("redshift", _redshift)
>>> print (a["redshift"])

ytree.data_structures.arbor.Arbor.add_vector_field

Arbor.add_vector_field(name)
Add vector fields for a set of x,y,z component fields.

This will add a general vector field that returns the combined x, y, z components as a single Nx3 array. A
<field>_magnitude field with the quadrature sum of the components is also added.

Parameters name (string) – The name of the field. Component x,y,z fields must exist.

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> for ax in 'xyz':
>>> a.add_analysis_field(f"thing_{ax}")
>>> fn = a.save_arbor()
>>> a_new = ytree.load(fn)
>>> a_new.add_vector_field("thing")
>>> print (a_new["thing"])
>>> print (a_new["thing_magnitude"])

ytree.data_structures.arbor.Arbor.save_arbor

Arbor.save_arbor(**kwargs)
Save the arbor to a file.

The saved arbor can be re-loaded as an arbor.

Parameters

• filename (optional, string) – Output file keyword. If filename ends in “.h5”,
the main header file will be just that. If not, filename will be <filename>/<basename>.h5.
Default: “arbor”.

2.15. Reference 41

ytree Documentation, Release 3.0.0

• fields (optional, list of strings) – The fields to be saved. If not given, all
fields will be saved.

• trees (optional, list or array of TreeNodes) – If given, only save trees
stemming from these nodes. If not provide, all trees will be saved.

• max_file_size (optional, float) – The maximum number of nodes saved to a
single file. Smaller numbers will result in more files. Performance may change somewhat
with different values. Default: 524288 (2^19).

Returns header_filename – The filename of the saved arbor.

Return type string

Examples

>>> import ytree
>>> a = ytree.load("rockstar_halos/trees/tree_0_0_0.dat")
>>> fn = a.save_arbor()
>>> # reload it
>>> a2 = ytree.load(fn)

ytree.data_structures.arbor.Arbor.select_halos

Arbor.select_halos(criteria, trees=None, select_from=None, fields=None)
Select halos from the arbor based on a set of criteria given as a string.

Halos matching the criteria will be returned through a generator. Matches are returned as soon as they are
found, allowing you to begin working with them before the search has completed. The progress bar will update
to report the number of matches found as the search progresses.

Parameters

• criteria (string) – A string that will eval to a Numpy-like selection operation per-
formed on a TreeNode object called “tree”. Example: ‘tree[“tree”, “redshift”] > 1’

• trees (optional, list or array of TreeNodes) – A list or array of TreeN-
ode objects in which to search. If none given, the search is performed over the full arbor.

• select_from (deprecated, do not use) – This keyword is no longer required
and using it does nothing.

• fields (deprecated, do not use) – This keyword is no longer required and using
it does nothing.

Returns halos – A generator yielding all TreeNodes meeting the criteria.

Return type TreeNode generator

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> for halo in a.select_halos('tree["tree", "redshift"] > 1'):
... print (halo["mass"])
>>>

(continues on next page)

42 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

(continued from previous page)

>>> halos = list(a.select_halos('tree["prog", "mass"].to("Msun") >= 1e10'))
>>> print (len(halos))

ytree.data_structures.tree_node.TreeNode

class ytree.data_structures.tree_node.TreeNode(uid, arbor=None, root=False)
Class for objects stored in Arbors.

Each TreeNode represents a halo in a tree. A TreeNode knows its halo ID, the level in the tree, and its global ID
in the Arbor that holds it. It also has a list of its ancestors. Fields can be queried for it, its progenitor list, and
the tree beneath.

__init__(uid, arbor=None, root=False)
Initialize a TreeNode with at least its halo catalog ID and its level in the tree.

Methods

__init__(uid[, arbor, root]) Initialize a TreeNode with at least its halo catalog ID
and its level in the tree.

clear_fields() If a root node, delete field data.
find_root() Find the root node.
get_leaf_nodes([selector]) Get all leaf nodes from the tree of which this is the

head.
get_node(selector, index) Get a single TreeNode from a tree.
get_root_nodes() Get all root nodes from the forest to which this node

belongs.
query(key) Return field values for this TreeNode, progenitor list,

or tree.
save_tree([filename, fields]) Save the tree to a file.
walk_to_root() Walk descendents until root.

Attributes

ancestors Return a generator of ancestor nodes.
desc_uids Array of descendent uids for all nodes in the tree.
descendent Return the descendent node.
is_root Is this node the last in the tree?
tree_id Return the index of this node in a list of all nodes in

the tree.
tree_size Number of nodes in the tree.
uids Array of uids for all nodes in the tree.

ytree.data_structures.tree_node.TreeNode.get_leaf_nodes

TreeNode.get_leaf_nodes(selector=None)
Get all leaf nodes from the tree of which this is the head.

This returns a generator of all leaf nodes belonging to this tree. A leaf node is a node that has no ancestors.

Parameters selector (optional, str ("forest", "tree", or "prog")) – The

2.15. Reference 43

ytree Documentation, Release 3.0.0

tree selector from which leaf nodes will be found. If none given, this will be set to “forest”
if the calling node is a root node and “tree” otherwise.

Returns leaf_nodes – TreeNode objects.

Return type a generator of

Examples

>>> import ytree
>>> a = ytree.load("tiny_ctrees/locations.dat")
>>> my_tree = a[0]
>>> for leaf in my_tree.get_leaf_nodes():
... print (leaf["mass"])

ytree.data_structures.tree_node.TreeNode.get_root_nodes

TreeNode.get_root_nodes()
Get all root nodes from the forest to which this node belongs.

This returns a generator of all root nodes in the forest. A root node is a node that has no descendents.

Returns root_nodes – TreeNode objects.

Return type a generator of

Examples

>>> import ytree
>>> a = ytree.load("consistent_trees_hdf5/soa/forest.h5",
... access="forest")
>>> my_tree = a[0]
>>> for root in my_tree.get_root_nodes():
... print (root["mass"])

ytree.data_structures.tree_node.TreeNode.get_node

TreeNode.get_node(selector, index)
Get a single TreeNode from a tree.

Use this to get the nth TreeNode from a forest, tree, or progenitor list for which the calling TreeNode is the head.

Parameters

• selector (str ("forest", "tree", or "prog")) – The tree selector from
which to get the TreeNode. This should be “forest”, “tree”, or “prog”.

• index (int) – The index of the desired TreeNode in the forest, tree, or progenitor list.

Returns node

Return type TreeNode

44 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Examples

>>> import ytree
>>> a = ytree.load("tiny_ctrees/locations.dat")
>>> my_tree = a[0]
>>> # get 6th TreeNode in the progenitor list
>>> my_node = my_tree.get_node('prog', 5)

ytree.data_structures.tree_node.TreeNode.save_tree

TreeNode.save_tree(filename=None, fields=None)
Save the tree to a file.

The saved tree can be re-loaded as an arbor.

Parameters

• filename (optional, string) – Output file keyword. Main header file will be
named <filename>/<filename>.h5. Default: “tree_<uid>”.

• fields (optional, list of strings) – The fields to be saved. If not given, all
fields will be saved.

Returns filename – The filename of the saved arbor.

Return type string

Examples

>>> import ytree
>>> a = ytree.load("rockstar_halos/trees/tree_0_0_0.dat")
>>> # save the first tree
>>> fn = a[0].save_tree()
>>> # reload it
>>> a2 = ytree.load(fn)

ytree.data_structures.tree_node_selector.TreeNodeSelector

class ytree.data_structures.tree_node_selector.TreeNodeSelector(function,
args=None,
kwargs=None)

The TreeNodeSelector is responsible for choosing which one of a halo’s ancestors to return when querying the
line of main progenitors for a halo.

Parameters

• ancestors (list of TreeNode objects) – List of TreeNode objects from which
to select.

• function should return a single TreeNode. (The) –

2.15. Reference 45

ytree Documentation, Release 3.0.0

Examples

>>> import ytree
>>> def max_value(ancestors, field):
... vals = np.array([a[field] for a in ancestors])
... return ancestors[np.argmax(vals)]
>>> ytree.add_tree_node_selector("max_field_value", max_value)
>>> a = ytree.load("tree_0_0_0.dat")
>>> a.set_selector("max_field_value", "mass")
>>> print (a[0]["prog"])

__init__(function, args=None, kwargs=None)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(function[, args, kwargs]) Initialize self.

ytree.data_structures.arbor.Arbor.set_selector

Arbor.set_selector(selector, *args, **kwargs)
Sets the tree node selector to be used.

This sets the manner in which halo progenitors are chosen from a list of ancestors. The most obvious example
is to select the most massive ancestor.

Parameters

• selector (string) – Name of the selector to be used.

• additional arguments and keywords to be provided to (Any) –

• selector function should follow. (the) –

Examples

>>> import ytree
>>> a = ytree.load("rockstar_halos/trees/tree_0_0_0.dat")
>>> a.set_selector("max_field_value", "mass")

ytree.data_structures.tree_node_selector.add_tree_node_selector

ytree.data_structures.tree_node_selector.add_tree_node_selector(name, func-
tion)

Add a TreeNodeSelector to the registry of known selectors, so they can be chosen with set_selector.

Parameters

• name (string) – Name of the selector.

• function (callable) – The associated function.

46 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Examples

>>> import ytree
>>> def max_value(ancestors, field):
... vals = np.array([a[field] for a in ancestors])
... return ancestors[np.argmax(vals)]
>>> ytree.add_tree_node_selector("max_field_value", max_value)
>>> a = ytree.load("tree_0_0_0.dat")
>>> a.set_selector("max_field_value", "mass")
>>> print (a[0]["prog"])

ytree.data_structures.tree_node_selector.max_field_value

ytree.data_structures.tree_node_selector.max_field_value(ancestors, field)
Return the TreeNode with the maximum value of the given field.

Parameters

• ancestors (list of TreeNode objects) – List of TreeNode objects from which
to select.

• field (string) – Field to be used for selection.

Returns

Return type TreeNode object

ytree.data_structures.tree_node_selector.min_field_value

ytree.data_structures.tree_node_selector.min_field_value(ancestors, field)
Return the TreeNode with the minimum value of the given field.

Parameters

• ancestors (list of TreeNode objects) – List of TreeNode objects from which
to select.

• field (string) – Field to be used for selection.

Returns

Return type TreeNode object

ytree.frontends.ytree.arbor.YTreeArbor.get_yt_selection

YTreeArbor.get_yt_selection(above=None, below=None, equal=None, about=None, condition-
als=None, data_source=None)

Get a selection of halos meeting given criteria.

This function can be used to create database-like queries to search for halos meeting various criteria. It will
return a YTCutRegion that can be queried to get field values for all halos meeting the selection criteria. The
YTCutRegion can then be passed to get_nodes_from_selection to get all the TreeNode objects
that meet the criteria.

If multiple criteria are provided, selected halos must meet all criteria.

To specify a custom data container, use the ytds attribute associated with the arbor to access the merger tree
data as a yt dataset. For example:

2.15. Reference 47

http://yt-project.org/docs/dev/reference/api/yt.data_objects.selection_objects.cut_region.html#yt.data_objects.selection_objects.cut_region.YTCutRegion
http://yt-project.org/docs/dev/reference/api/yt.data_objects.selection_objects.cut_region.html#yt.data_objects.selection_objects.cut_region.YTCutRegion

ytree Documentation, Release 3.0.0

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> ds = a.ytds

Parameters

• above (optional, list of tuples with (field, value, <units>)) –
Halos meeting a given criterion must have field values at or above the provided limiting
value. Each entry in the list must contain the field name, limiting value, and (optionally)
units.

• below (optional, list of tuples with (field, value, <units>)) –
Halos meeting a given criterion must have field values at or below the provided limiting
value. Each entry in the list must contain the field name, limiting value, and (optionally)
units.

• equal (optional, list of tuples with (field, value, <units>)) –
Halos meeting a given criterion must have field values equal to the provided value. Each
entry in the list must contain the field name, value, and (optionally) units.

• about (optional, list of tuples with (field, value,
tolerance, <units>)) – Halos meeting a given criterion must have field val-
ues within the tolerance of the provided value. Each entry in the list must contain the field
name, value, tolerance, and (optionally) units.

• conditionals (optional, list of strings) – A list of conditionals for con-
structing a custom YTCutRegion. This can be used instead of above/below/equal/about to
create more complex selection criteria. See the Cut Regions section in the yt documentation
for more information. The conditionals keyword can only be used if none of the first for
selection keywords are given.

• data_source (optional, YTDataContainer) – The source yt data container to be used
to make the cut region. If none given, the all_data container (i.e., the full dataset) is used.

Returns cr – The cut region associated with the provided selection criteria.

Return type YTCutRegion

Examples

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # select halos above 1e12 Msun at redshift > 0.5
>>> sel = a.get_yt_selection(
... above=[("mass", 1e13, "Msun"),
... ("redshift", 0.5)])
>>> print (sel["halos", "mass"])
>>> print (sel["halos", "virial_radius"])

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # select halos below 1e13 Msun at redshift > 1
>>> sel = a.get_yt_selection(
... below=[("mass", 1e13, "Msun")],
... above=[("redshift", 1)])
>>> print (sel["halos", "mass"])
>>> print (sel["halos", "virial_radius"])

48 Chapter 2. Table of Contents

http://yt-project.org/docs/dev/reference/api/yt.data_objects.selection_objects.cut_region.html#yt.data_objects.selection_objects.cut_region.YTCutRegion
http://yt-project.org/docs/dev/reference/api/yt.data_objects.data_containers.html#yt.data_objects.data_containers.YTDataContainer
http://yt-project.org/docs/dev/reference/api/yt.data_objects.selection_objects.cut_region.html#yt.data_objects.selection_objects.cut_region.YTCutRegion

ytree Documentation, Release 3.0.0

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # select phantom halos (a consistent-trees field)
>>> sel = a.get_yt_selection(equal=[("phantom", 1)])

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # select halos with vmax of 200 +-10 km/s (i.e., 5%)
>>> sel = a.get_yt_selection(about=[("vmax", 200, "km/s", 0.05)])

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # use a yt conditional
>>> sel = a.get_yt_selection(
... conditionals=['obj["halos", "mass"] > 1e12'])

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # select halos only within a sphere
>>> ds = a.ytds
>>> sphere = ds.sphere(ds.domain_center, (10, Mpc))
>>> sel = a.get_yt_selection(
... above=[("mass", 1e13)],
... data_source=sphere)
>>> # get the TreeNodes for the selection
>>> for node in a.get_nodes_from_selection(sel):
... print (node["mass"])

See also:

select_halos, get_nodes_from_selection

ytree.frontends.ytree.arbor.YTreeArbor.get_nodes_from_selection

YTreeArbor.get_nodes_from_selection(container)
Generate TreeNodes from a yt data container.

All halos contained within the data container will be returned as TreeNode objects. This returns a generator that
can be iterated over or cast as a list.

Parameters container (YTDataContainer) – Data container, such as a sphere or region,
from which nodes will be generated.

Returns nodes – The TreeNode objects contained within the container.

Return type generator

Examples

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> c = a.arr([0.5, 0.5, 0.5], "unitary")
>>> sphere = a.ytds.sphere(c, (0.1, "unitary"))
>>> for node in a.get_nodes_from_selection(sphere):
... print (node["mass"])

2.15. Reference 49

http://yt-project.org/docs/dev/reference/api/yt.data_objects.data_containers.html#yt.data_objects.data_containers.YTDataContainer

ytree Documentation, Release 3.0.0

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>> # select halos above 1e12 Msun at redshift > 0.5
>>> sel = a.get_yt_selection(
... above=[("mass", 1e13, "Msun"),
... ("redshift", 0.5)])
>>> my_nodes = list(a.get_nodes_from_selection(sel))

ytree.frontends.ytree.arbor.YTreeArbor.ytds

YTreeArbor.ytds
Load as a yt dataset.

Merger tree data is loaded as a yt dataset, providing full access to yt functionality. Fields are accessed with the
naming convention, (“halos”, <field name>).

Examples

>>> import ytree
>>> a = ytree.load("arbor/arbor.h5")
>>>
>>> ds = a.ytds
>>> sphere = ds.sphere(ds.domain_center, (5, "Mpc"))
>>> print (sphere["halos", "mass"])
>>>
>>> for node in a.get_nodes_from_selection(sphere):
... print (node["position"])

Visualizing Merger Trees

Functionality for plotting merger trees.

TreePlot(tree[, dot_kwargs, node_function, . . .]) Make a simple merger tree plot using pydot and
graphviz.

save([filename]) Save the merger tree plot.

ytree.visualization.tree_plot.TreePlot

class ytree.visualization.tree_plot.TreePlot(tree, dot_kwargs=None,
node_function=None,
edge_function=None)

Make a simple merger tree plot using pydot and graphviz.

Parameters

• tree (merger tree node TreeNode) – The merger tree to be plotted.

• dot_kwargs (optional, dict) – A dictionary of keyword arguments to be passed to
pydot.Dot. Default: None.

• node_function (optional, function) – A function accepting a single argument
of a TreeNode and returning a dictionary of keywords to be given to pydot for creating

50 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

the node object on the plot. This can be used to customize the appearance of the nodes. See
examples below. Default: None.

• edge_function (optional, function) – A function accepting two TreeNode
objects and returning a dictionary of keywords to be given to pydot for creating the edge
object on the plot (the lines connecting halos). This can be used to customize the appearance
of the edges. See examples below. Default: None.

size_field
The field to determine the size of each circle. Default: ‘mass’.

Type str

size_log
Whether to scale circle sizes based on log of size field. Default: True.

Type bool

min_mass
The minimum halo mass to be included in the plot. If given as a float, units are assumed to be Msun.
Default: None.

Type float or unyt_quantity

min_mass_ratio
The minimum ratio between a halo’s mass and the mass of the main halo to be included in the plot. Default:
None.

Type float

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> p = ytree.TreePlot(a[0])
>>> p.min_mass = 1e6 # Msun
>>> p.save()

>>> # customizing nodes
>>> import ytree
>>> def my_node(halo):
... label = f"{halo['uid']}"
... my_kwargs = {"label": label, "fontsize": 8, "shape": "square"}
... return my_kwargs
>>> a = ytree.load("tree_0_0_0.dat")
>>> p = ytree.TreePlot(a[0], node_function=my_node)
>>> p.save()

>>> # customizing edges
>>> import ytree
>>> def my_edge(ancestor, descendent):
... if descendent['mass'] < ancestor['mass']:
... color = 'blue'
... else:
... color = 'black'
... my_kwargs = {"color": color, "penwidth": 5}
... return my_kwargs
>>> a = ytree.load("tree_0_0_0.dat")

(continues on next page)

2.15. Reference 51

ytree Documentation, Release 3.0.0

(continued from previous page)

>>> p = ytree.TreePlot(a[0], edge_function=my_edge)
>>> p.save()

__init__(tree, dot_kwargs=None, node_function=None, edge_function=None)
Initialize a TreePlot.

Methods

__init__(tree[, dot_kwargs, node_function, . . .]) Initialize a TreePlot.
save([filename]) Save the merger tree plot.

Attributes

min_mass The minimum halo mass to be included in the plot.
min_mass_ratio The minimum halo mass to main halo mass.
size_field The field to determine the size of each circle.
size_log Whether to scale circle sizes based on log of size

field.

ytree.visualization.tree_plot.TreePlot.save

TreePlot.save(filename=None)
Save the merger tree plot.

Parameters filename (optional, str) – The output filename. If none given, the uid of the
head node is used. Default: None.

Examples

>>> import ytree
>>> a = ytree.load("tree_0_0_0.dat")
>>> p = ytree.TreePlot(a[0])
>>> p.save('tree.png')

Internal Classes

Base Classes

All frontends inherit from these base classes for arbor, fields, and i/o.

Arbor(filename) Base class for all Arbor classes.
SegmentedArbor(filename) Arbor subclass for multi-file datasets where an entire

merger tree is contained within a file (i.e., no overlap).
CatalogArbor(filename) Base class for Arbors created from a series of halo cata-

log files where the descendent ID for each halo has been
pre-determined.

Continued on next page

52 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Table 10 – continued from previous page
Detector Base class for detecting field dependencies and testing

operations.
FieldDetector(arbor[, name]) A fake field data container used to calculate dependen-

cies.
SelectionDetector(arbor) A TreeNode-like object to test select_halos criteria.
FieldInfoContainer(arbor) A container for information about fields.
FieldContainer(arbor) A container for field data.
FieldIO(arbor[, default_dtype]) Base class for FieldIO classes.
TreeFieldIO(arbor[, default_dtype]) IO class for getting fields for a tree.
DefaultRootFieldIO(arbor[, default_dtype]) Class for getting root fields from arbors that have no

specialized storage for root fields.
DataFile(filename) Base class for data files.
CatalogDataFile(filename, arbor) Base class for halo catalog files.

ytree.data_structures.arbor.SegmentedArbor

class ytree.data_structures.arbor.SegmentedArbor(filename)
Arbor subclass for multi-file datasets where an entire merger tree is contained within a file (i.e., no overlap).
This permits the definition of a useful _node_io_loop_prepare function.

__init__(filename)
Initialize an Arbor given an input file.

Methods

__init__(filename) Initialize an Arbor given an input file.
add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
get_nodes_from_selection(*args,
**kwargs)
get_yt_selection(*args, **kwargs)
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.
save_arbor(**kwargs) Save the arbor to a file.
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

2.15. Reference 53

ytree Documentation, Release 3.0.0

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds

ytree.data_structures.arbor.CatalogArbor

class ytree.data_structures.arbor.CatalogArbor(filename)
Base class for Arbors created from a series of halo catalog files where the descendent ID for each halo has been
pre-determined.

Unlike formats where tree information is stored in single file, halos are scattered about multiple catalog files.
This requires us to store the root TreeNode objects and their full assemblies.

__init__(filename)
Initialize an Arbor given an input file.

Methods

__init__(filename) Initialize an Arbor given an input file.
add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
get_nodes_from_selection(*args,
**kwargs)
get_yt_selection(*args, **kwargs)
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.
save_arbor(**kwargs) Save the arbor to a file.

Continued on next page

54 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Table 13 – continued from previous page
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds

ytree.data_structures.detection.Detector

class ytree.data_structures.detection.Detector
Base class for detecting field dependencies and testing operations.

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

clear()
copy()
fromkeys Create a new dictionary with keys from iterable and

values set to value.
get Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
setdefault Insert key with a value of default if key is not in the

dictionary.
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

Continued on next page

2.15. Reference 55

ytree Documentation, Release 3.0.0

Table 15 – continued from previous page
values()

Attributes

default_factory Factory for default value called by __missing__().

ytree.data_structures.detection.FieldDetector

class ytree.data_structures.detection.FieldDetector(arbor, name=None)
A fake field data container used to calculate dependencies.

__init__(arbor, name=None)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor[, name]) Initialize self.
clear()
copy()
fromkeys Create a new dictionary with keys from iterable and

values set to value.
get Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
setdefault Insert key with a value of default if key is not in the

dictionary.
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes

default_factory Factory for default value called by __missing__().

ytree.data_structures.detection.SelectionDetector

class ytree.data_structures.detection.SelectionDetector(arbor)
A TreeNode-like object to test select_halos criteria.

__init__(arbor)
Initialize self. See help(type(self)) for accurate signature.

56 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Methods

__init__(arbor) Initialize self.
clear()
copy()
fromkeys Create a new dictionary with keys from iterable and

values set to value.
get Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
setdefault Insert key with a value of default if key is not in the

dictionary.
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes

default_factory Factory for default value called by __missing__().

ytree.data_structures.fields.FieldInfoContainer

class ytree.data_structures.fields.FieldInfoContainer(arbor)
A container for information about fields.

__init__(arbor)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor) Initialize self.
add_alias_field(alias, field[, units,
force_add])

Add an alias field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an analysis field.

add_derived_field(name, function[, units,
. . .])

Add a derived field.

add_vector_field(fieldname) Add vector and magnitude fields for a field with x/y/z
components.

clear()
copy()

Continued on next page

2.15. Reference 57

ytree Documentation, Release 3.0.0

Table 21 – continued from previous page
fromkeys Create a new dictionary with keys from iterable and

values set to value.
get Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
resolve_field_dependencies(fields[,
fcache, . . .])

Divide fields into those to be read and those to gen-
erate.

setdefault Insert key with a value of default if key is not in the
dictionary.

setup_aliases() Add aliases defined in the alias_fields tuple for each
frontend.

setup_derived_fields() Add stock derived fields.
setup_known_fields() Add units for fields on disk as defined in the

known_fields tuple.
setup_vector_fields() Add vector and magnitude fields.
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes

alias_fields
data_types
known_fields
vector_fields

ytree.data_structures.fields.FieldContainer

class ytree.data_structures.fields.FieldContainer(arbor)
A container for field data.

__init__(arbor)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor) Initialize self.
clear()
copy()
fromkeys Create a new dictionary with keys from iterable and

values set to value.
Continued on next page

58 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Table 23 – continued from previous page
get Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
setdefault Insert key with a value of default if key is not in the

dictionary.
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

values()

ytree.data_structures.io.FieldIO

class ytree.data_structures.io.FieldIO(arbor, default_dtype=<class ’numpy.float64’>)
Base class for FieldIO classes.

This object is resposible for field i/o for an Arbor.

__init__(arbor, default_dtype=<class ’numpy.float64’>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor[, default_dtype]) Initialize self.
get_fields(data_object[, fields]) Load field data for a data object into storage struc-

tures.

ytree.data_structures.io.TreeFieldIO

class ytree.data_structures.io.TreeFieldIO(arbor, default_dtype=<class
’numpy.float64’>)

IO class for getting fields for a tree.

__init__(arbor, default_dtype=<class ’numpy.float64’>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor[, default_dtype]) Initialize self.
get_fields(data_object[, fields]) Load field data for a data object into storage struc-

tures.

2.15. Reference 59

ytree Documentation, Release 3.0.0

ytree.data_structures.io.DefaultRootFieldIO

class ytree.data_structures.io.DefaultRootFieldIO(arbor, default_dtype=<class
’numpy.float64’>)

Class for getting root fields from arbors that have no specialized storage for root fields.

__init__(arbor, default_dtype=<class ’numpy.float64’>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor[, default_dtype]) Initialize self.
get_fields(data_object[, fields]) Load field data for a data object into storage struc-

tures.

ytree.data_structures.io.DataFile

class ytree.data_structures.io.DataFile(filename)
Base class for data files.

This class allows us keep files open during i/o heavy operations and to keep things like caches of fields.

__init__(filename)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(filename) Initialize self.
close()
open()

ytree.data_structures.io.CatalogDataFile

class ytree.data_structures.io.CatalogDataFile(filename, arbor)
Base class for halo catalog files.

__init__(filename, arbor)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(filename, arbor) Initialize self.
close()
open()

Arbor Subclasses

Arbor subclasses for each frontend.

60 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

AHFArbor(filename[, log_filename, . . .]) Arbor for Amiga Halo Finder data.
ConsistentTreesArbor(filename) Arbors loaded from consistent-trees tree_*.dat files.
ConsistentTreesGroupArbor(filename) Arbors loaded from consistent-trees locations.dat files.
ConsistentTreesHlistArbor(filename) Class for Arbors created from consistent-trees

hlist_*.list files.
ConsistentTreesHDF5Arbor(filename[, access]) Arbors loaded from consistent-trees data converted into

HDF5.
LHaloTreeArbor(*args, **kwargs) Arbors for LHaloTree data.
LHaloTreeHDF5Arbor(filename[, . . .]) Arbors loaded from consistent-trees data converted into

HDF5.
MoriaArbor(filename) Arbors from Moria merger trees.
RockstarArbor(filename) Class for Arbors created from Rockstar out_*.list files.
TreeFarmArbor(filename) Class for Arbors created with TreeFarm.
YTreeArbor(filename) Class for Arbors created from the save_arbor or

save_tree functions.

ytree.frontends.ahf.arbor.AHFArbor

class ytree.frontends.ahf.arbor.AHFArbor(filename, log_filename=None, hub-
ble_constant=1.0, box_size=None,
omega_matter=None, omega_lambda=None)

Arbor for Amiga Halo Finder data.

__init__(filename, log_filename=None, hubble_constant=1.0, box_size=None, omega_matter=None,
omega_lambda=None)

Initialize an Arbor given an input file.

Methods

__init__(filename[, log_filename, . . .]) Initialize an Arbor given an input file.
add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
get_nodes_from_selection(*args,
**kwargs)
get_yt_selection(*args, **kwargs)
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.
save_arbor(**kwargs) Save the arbor to a file.
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
Continued on next page

2.15. Reference 61

ytree Documentation, Release 3.0.0

Table 30 – continued from previous page
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds

ytree.frontends.consistent_trees.arbor.ConsistentTreesArbor

class ytree.frontends.consistent_trees.arbor.ConsistentTreesArbor(filename)
Arbors loaded from consistent-trees tree_*.dat files.

__init__(filename)
Initialize an Arbor given an input file.

Methods

__init__(filename) Initialize an Arbor given an input file.
add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
get_nodes_from_selection(*args,
**kwargs)
get_yt_selection(*args, **kwargs)
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.
save_arbor(**kwargs) Save the arbor to a file.

Continued on next page

62 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Table 32 – continued from previous page
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds

ytree.frontends.consistent_trees.arbor.ConsistentTreesGroupArbor

class ytree.frontends.consistent_trees.arbor.ConsistentTreesGroupArbor(filename)
Arbors loaded from consistent-trees locations.dat files.

__init__(filename)
Initialize an Arbor given an input file.

Methods

__init__(filename) Initialize an Arbor given an input file.
add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
get_nodes_from_selection(*args,
**kwargs)
get_yt_selection(*args, **kwargs)
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.

Continued on next page

2.15. Reference 63

ytree Documentation, Release 3.0.0

Table 34 – continued from previous page
save_arbor(**kwargs) Save the arbor to a file.
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds

ytree.frontends.consistent_trees.arbor.ConsistentTreesHlistArbor

class ytree.frontends.consistent_trees.arbor.ConsistentTreesHlistArbor(filename)
Class for Arbors created from consistent-trees hlist_*.list files.

This is a hybrid type with multiple catalog files like the rockstar frontend, but with headers structured like
consistent-trees.

__init__(filename)
Initialize an Arbor given an input file.

Methods

__init__(filename) Initialize an Arbor given an input file.
add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
get_nodes_from_selection(*args,
**kwargs)
get_yt_selection(*args, **kwargs)
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
Continued on next page

64 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Table 36 – continued from previous page
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.
save_arbor(**kwargs) Save the arbor to a file.
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds

ytree.frontends.consistent_trees_hdf5.arbor.ConsistentTreesHDF5Arbor

class ytree.frontends.consistent_trees_hdf5.arbor.ConsistentTreesHDF5Arbor(filename,
ac-
cess=’tree’)

Arbors loaded from consistent-trees data converted into HDF5.

__init__(filename, access=’tree’)
Initialize an Arbor given an input file.

Methods

__init__(filename[, access]) Initialize an Arbor given an input file.
add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
get_nodes_from_selection(*args,
**kwargs)

Continued on next page

2.15. Reference 65

ytree Documentation, Release 3.0.0

Table 38 – continued from previous page
get_yt_selection(*args, **kwargs)
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.
save_arbor(**kwargs) Save the arbor to a file.
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds

ytree.frontends.lhalotree.arbor.LHaloTreeArbor

class ytree.frontends.lhalotree.arbor.LHaloTreeArbor(*args, **kwargs)
Arbors for LHaloTree data.

__init__(*args, **kwargs)
Added reader class to allow fast access of header info.

Methods

__init__(*args, **kwargs) Added reader class to allow fast access of header
info.

add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
Continued on next page

66 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Table 40 – continued from previous page
get_nodes_from_selection(*args,
**kwargs)
get_yt_selection(*args, **kwargs)
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.
save_arbor(**kwargs) Save the arbor to a file.
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds

ytree.frontends.lhalotree_hdf5.arbor.LHaloTreeHDF5Arbor

class ytree.frontends.lhalotree_hdf5.arbor.LHaloTreeHDF5Arbor(filename, hub-
ble_constant=1.0,
box_size=None,
omega_matter=None,
omega_lambda=None)

Arbors loaded from consistent-trees data converted into HDF5.

__init__(filename, hubble_constant=1.0, box_size=None, omega_matter=None,
omega_lambda=None)

Initialize an Arbor given an input file.

Methods

__init__(filename[, hubble_constant, . . .]) Initialize an Arbor given an input file.
Continued on next page

2.15. Reference 67

ytree Documentation, Release 3.0.0

Table 42 – continued from previous page
add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
get_nodes_from_selection(*args,
**kwargs)
get_yt_selection(*args, **kwargs)
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.
save_arbor(**kwargs) Save the arbor to a file.
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds

ytree.frontends.moria.arbor.MoriaArbor

class ytree.frontends.moria.arbor.MoriaArbor(filename)
Arbors from Moria merger trees.

__init__(filename)
Initialize an Arbor given an input file.

Methods

68 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

__init__(filename) Initialize an Arbor given an input file.
add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
get_nodes_from_selection(*args,
**kwargs)
get_yt_selection(*args, **kwargs)
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.
save_arbor(**kwargs) Save the arbor to a file.
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds

ytree.frontends.rockstar.arbor.RockstarArbor

class ytree.frontends.rockstar.arbor.RockstarArbor(filename)
Class for Arbors created from Rockstar out_*.list files. Use only descendent IDs to determine tree relationship.

__init__(filename)
Initialize an Arbor given an input file.

Methods

2.15. Reference 69

ytree Documentation, Release 3.0.0

__init__(filename) Initialize an Arbor given an input file.
add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
get_nodes_from_selection(*args,
**kwargs)
get_yt_selection(*args, **kwargs)
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.
save_arbor(**kwargs) Save the arbor to a file.
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds

ytree.frontends.treefarm.arbor.TreeFarmArbor

class ytree.frontends.treefarm.arbor.TreeFarmArbor(filename)
Class for Arbors created with TreeFarm.

__init__(filename)
Initialize an Arbor given an input file.

Methods

70 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

__init__(filename) Initialize an Arbor given an input file.
add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
get_nodes_from_selection(*args,
**kwargs)
get_yt_selection(*args, **kwargs)
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.
save_arbor(**kwargs) Save the arbor to a file.
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds

ytree.frontends.ytree.arbor.YTreeArbor

class ytree.frontends.ytree.arbor.YTreeArbor(filename)
Class for Arbors created from the save_arbor or save_tree functions.

__init__(filename)
Initialize an Arbor given an input file.

Methods

2.15. Reference 71

ytree Documentation, Release 3.0.0

__init__(filename) Initialize an Arbor given an input file.
add_alias_field(alias, field[, units,
force_add])

Add a field as an alias to another field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an empty field to be filled by analysis opera-
tions.

add_derived_field(name, function[, units,
. . .])

Add a field that is a function of other fields.

add_vector_field(name) Add vector fields for a set of x,y,z component fields.
get_nodes_from_selection(container) Generate TreeNodes from a yt data container.
get_yt_selection([above, below, equal, . . .]) Get a selection of halos meeting given criteria.
is_grown(tree_node) Return True if a tree has been fully assembled, i.e.,

the hierarchy of ancestor tree nodes has been built.
is_setup(tree_node) Return True if arrays of uids and descendent uids

have been read in.
query(key) If given a string, return an array of field values for

the roots of all trees.
reset_node(tree_node) Reset all data structures for a single node.
save_arbor(**kwargs) Save the arbor to a file.
select_halos(criteria[, trees, select_from, . . .]) Select halos from the arbor based on a set of criteria

given as a string.
set_selector(selector, *args, **kwargs) Sets the tree node selector to be used.

Attributes

arr Create a unyt_array using the Arbor’s unit registry.
box_size The simulation box size.
field_info A dictionary containing information for each avail-

able field.
hubble_constant Value of the Hubble parameter.
is_planted Determine if trees have been planted.
omega_lambda
omega_matter
omega_radiation
quan Create a unyt_quantity using the Arbor’s unit reg-

istry.
size Return total number of trees.
unit_registry Unit system registry.
ytds Load as a yt dataset.

FieldInfo Subclasses

Subclasses for frontend-specific field definitions.

AHFFieldInfo(arbor)
ConsistentTreesFieldInfo(arbor)
ConsistentTreesHDF5FieldInfo(arbor)
LHaloTreeFieldInfo(arbor)
LHaloTreeHDF5FieldInfo(arbor)
MoriaFieldInfo(arbor)

Continued on next page

72 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Table 52 – continued from previous page
RockstarFieldInfo(arbor)
TreeFarmFieldInfo(arbor)

ytree.frontends.ahf.fields.AHFFieldInfo

class ytree.frontends.ahf.fields.AHFFieldInfo(arbor)

__init__(arbor)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor) Initialize self.
add_alias_field(alias, field[, units,
force_add])

Add an alias field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an analysis field.

add_derived_field(name, function[, units,
. . .])

Add a derived field.

add_vector_field(fieldname) Add vector and magnitude fields for a field with x/y/z
components.

clear()
copy()
fromkeys Create a new dictionary with keys from iterable and

values set to value.
get Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
resolve_field_dependencies(fields[,
fcache, . . .])

Divide fields into those to be read and those to gen-
erate.

setdefault Insert key with a value of default if key is not in the
dictionary.

setup_aliases() Add aliases defined in the alias_fields tuple for each
frontend.

setup_derived_fields() Add stock derived fields.
setup_known_fields() Add units for fields on disk as defined in the

known_fields tuple.
setup_vector_fields() Add vector and magnitude fields.
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

values()

2.15. Reference 73

ytree Documentation, Release 3.0.0

Attributes

alias_fields
data_types
known_fields
vector_fields

ytree.frontends.consistent_trees.fields.ConsistentTreesFieldInfo

class ytree.frontends.consistent_trees.fields.ConsistentTreesFieldInfo(arbor)

__init__(arbor)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor) Initialize self.
add_alias_field(alias, field[, units,
force_add])

Add an alias field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an analysis field.

add_derived_field(name, function[, units,
. . .])

Add a derived field.

add_vector_field(fieldname) Add vector and magnitude fields for a field with x/y/z
components.

clear()
copy()
fromkeys Create a new dictionary with keys from iterable and

values set to value.
get Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
resolve_field_dependencies(fields[,
fcache, . . .])

Divide fields into those to be read and those to gen-
erate.

setdefault Insert key with a value of default if key is not in the
dictionary.

setup_aliases() Add aliases defined in the alias_fields tuple for each
frontend.

setup_derived_fields() Add stock derived fields.
setup_known_fields() Add units for fields on disk as defined in the

known_fields tuple.
setup_vector_fields() Add vector and magnitude fields.

Continued on next page

74 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Table 55 – continued from previous page
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes

alias_fields
data_types
known_fields
vector_fields

ytree.frontends.consistent_trees_hdf5.fields.ConsistentTreesHDF5FieldInfo

class ytree.frontends.consistent_trees_hdf5.fields.ConsistentTreesHDF5FieldInfo(arbor)

__init__(arbor)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor) Initialize self.
add_alias_field(alias, field[, units,
force_add])

Add an alias field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an analysis field.

add_derived_field(name, function[, units,
. . .])

Add a derived field.

add_vector_field(fieldname) Add vector and magnitude fields for a field with x/y/z
components.

clear()
copy()
fromkeys Create a new dictionary with keys from iterable and

values set to value.
get Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
resolve_field_dependencies(fields[,
fcache, . . .])

Divide fields into those to be read and those to gen-
erate.

setdefault Insert key with a value of default if key is not in the
dictionary.

Continued on next page

2.15. Reference 75

ytree Documentation, Release 3.0.0

Table 57 – continued from previous page
setup_aliases() Add aliases defined in the alias_fields tuple for each

frontend.
setup_derived_fields() Add stock derived fields.
setup_known_fields() Add units for fields on disk as defined in the

known_fields tuple.
setup_vector_fields() Add vector and magnitude fields.
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes

alias_fields
data_types
known_fields
vector_fields

ytree.frontends.lhalotree.fields.LHaloTreeFieldInfo

class ytree.frontends.lhalotree.fields.LHaloTreeFieldInfo(arbor)

__init__(arbor)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor) Initialize self.
add_alias_field(alias, field[, units,
force_add])

Add an alias field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an analysis field.

add_derived_field(name, function[, units,
. . .])

Add a derived field.

add_vector_field(fieldname) Add vector and magnitude fields for a field with x/y/z
components.

clear()
copy()
fromkeys Create a new dictionary with keys from iterable and

values set to value.
get Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
Continued on next page

76 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Table 59 – continued from previous page
popitem() 2-tuple; but raise KeyError if D is empty.
resolve_field_dependencies(fields[,
fcache, . . .])

Divide fields into those to be read and those to gen-
erate.

setdefault Insert key with a value of default if key is not in the
dictionary.

setup_aliases() Add aliases defined in the alias_fields tuple for each
frontend.

setup_derived_fields() Add stock derived fields.
setup_known_fields() Add units for fields on disk as defined in the

known_fields tuple.
setup_vector_fields() Add vector and magnitude fields.
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes

alias_fields
data_types
known_fields
vector_fields

ytree.frontends.lhalotree_hdf5.fields.LHaloTreeHDF5FieldInfo

class ytree.frontends.lhalotree_hdf5.fields.LHaloTreeHDF5FieldInfo(arbor)

__init__(arbor)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor) Initialize self.
add_alias_field(alias, field[, units,
force_add])

Add an alias field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an analysis field.

add_derived_field(name, function[, units,
. . .])

Add a derived field.

add_vector_field(fieldname) Add vector and magnitude fields for a field with x/y/z
components.

clear()
copy()
fromkeys Create a new dictionary with keys from iterable and

values set to value.
Continued on next page

2.15. Reference 77

ytree Documentation, Release 3.0.0

Table 61 – continued from previous page
get Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
resolve_field_dependencies(fields[,
fcache, . . .])

Divide fields into those to be read and those to gen-
erate.

setdefault Insert key with a value of default if key is not in the
dictionary.

setup_aliases() Add aliases defined in the alias_fields tuple for each
frontend.

setup_derived_fields() Add stock derived fields.
setup_known_fields() Add units for all <fieldname>_<number> fields as

well.
setup_vector_fields() Add vector and magnitude fields.
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes

alias_fields
data_types
known_fields
vector_fields

ytree.frontends.moria.fields.MoriaFieldInfo

class ytree.frontends.moria.fields.MoriaFieldInfo(arbor)

__init__(arbor)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor) Initialize self.
add_alias_field(alias, field[, units,
force_add])

Add an alias field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an analysis field.

add_derived_field(name, function[, units,
. . .])

Add a derived field.

Continued on next page

78 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Table 63 – continued from previous page
add_vector_field(fieldname) Add vector and magnitude fields for a field with x/y/z

components.
clear()
copy()
fromkeys Create a new dictionary with keys from iterable and

values set to value.
get Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
resolve_field_dependencies(fields[,
fcache, . . .])

Divide fields into those to be read and those to gen-
erate.

setdefault Insert key with a value of default if key is not in the
dictionary.

setup_aliases() Add aliases defined in the alias_fields tuple for each
frontend.

setup_derived_fields() Add stock derived fields.
setup_known_fields() Add units for all <fieldname>_<number> fields as

well.
setup_vector_fields() Add vector and magnitude fields.
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes

alias_fields
data_types
known_fields
vector_fields

ytree.frontends.rockstar.fields.RockstarFieldInfo

class ytree.frontends.rockstar.fields.RockstarFieldInfo(arbor)

__init__(arbor)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor) Initialize self.
Continued on next page

2.15. Reference 79

ytree Documentation, Release 3.0.0

Table 65 – continued from previous page
add_alias_field(alias, field[, units,
force_add])

Add an alias field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an analysis field.

add_derived_field(name, function[, units,
. . .])

Add a derived field.

add_vector_field(fieldname) Add vector and magnitude fields for a field with x/y/z
components.

clear()
copy()
fromkeys Create a new dictionary with keys from iterable and

values set to value.
get Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
resolve_field_dependencies(fields[,
fcache, . . .])

Divide fields into those to be read and those to gen-
erate.

setdefault Insert key with a value of default if key is not in the
dictionary.

setup_aliases() Add aliases defined in the alias_fields tuple for each
frontend.

setup_derived_fields() Add stock derived fields.
setup_known_fields() Add units for fields on disk as defined in the

known_fields tuple.
setup_vector_fields() Add vector and magnitude fields.
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes

alias_fields
data_types
known_fields
vector_fields

ytree.frontends.treefarm.fields.TreeFarmFieldInfo

class ytree.frontends.treefarm.fields.TreeFarmFieldInfo(arbor)

__init__(arbor)
Initialize self. See help(type(self)) for accurate signature.

80 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Methods

__init__(arbor) Initialize self.
add_alias_field(alias, field[, units,
force_add])

Add an alias field.

add_analysis_field(name, units[, dtype, de-
fault])

Add an analysis field.

add_derived_field(name, function[, units,
. . .])

Add a derived field.

add_vector_field(fieldname) Add vector and magnitude fields for a field with x/y/z
components.

clear()
copy()
fromkeys Create a new dictionary with keys from iterable and

values set to value.
get Return the value for key if key is in the dictionary,

else default.
items()
keys()
pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
popitem() 2-tuple; but raise KeyError if D is empty.
resolve_field_dependencies(fields[,
fcache, . . .])

Divide fields into those to be read and those to gen-
erate.

setdefault Insert key with a value of default if key is not in the
dictionary.

setup_aliases() Add aliases defined in the alias_fields tuple for each
frontend.

setup_derived_fields() Add stock derived fields.
setup_known_fields() Add units for fields on disk as defined in the

known_fields tuple.
setup_vector_fields() Add vector and magnitude fields.
update([E,]**F) If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes

alias_fields
data_types
known_fields
vector_fields

FieldIO Subclasses

Subclasses for data i/o from a whole dataset.

2.15. Reference 81

ytree Documentation, Release 3.0.0

ConsistentTreesTreeFieldIO(arbor[, . . .])
ConsistentTreesHDF5TreeFieldIO(arbor[,
. . .])
ConsistentTreesHDF5RootFieldIO(arbor[,
. . .])

Read in fields for first node in all trees/forest.

LHaloTreeTreeFieldIO(arbor[, default_dtype])
LHaloTreeRootFieldIO(arbor[, default_dtype])
LHaloTreeHDF5TreeFieldIO(arbor[, de-
fault_dtype])
MoriaTreeFieldIO(arbor[, default_dtype])
YTreeTreeFieldIO(arbor[, default_dtype])
YTreeRootFieldIO(arbor[, default_dtype])

ytree.frontends.consistent_trees.io.ConsistentTreesTreeFieldIO

class ytree.frontends.consistent_trees.io.ConsistentTreesTreeFieldIO(arbor,
de-
fault_dtype=<class
’numpy.float64’>)

__init__(arbor, default_dtype=<class ’numpy.float64’>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor[, default_dtype]) Initialize self.
get_fields(data_object[, fields]) Load field data for a data object into storage struc-

tures.

ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5TreeFieldIO

class ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5TreeFieldIO(arbor,
de-
fault_dtype=<class
’numpy.float64’>)

__init__(arbor, default_dtype=<class ’numpy.float64’>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor[, default_dtype]) Initialize self.
get_fields(data_object[, fields]) Load field data for a data object into storage struc-

tures.

82 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5RootFieldIO

class ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5RootFieldIO(arbor,
de-
fault_dtype=<class
’numpy.float64’>)

Read in fields for first node in all trees/forest.

This function is optimized for the struct of arrays layout. It will work for array of structs layout, but field access
will be 1 to 2 orders of magnitude slower.

__init__(arbor, default_dtype=<class ’numpy.float64’>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor[, default_dtype]) Initialize self.
get_fields(data_object[, fields]) Load field data for a data object into storage struc-

tures.

ytree.frontends.lhalotree.io.LHaloTreeTreeFieldIO

class ytree.frontends.lhalotree.io.LHaloTreeTreeFieldIO(arbor, de-
fault_dtype=<class
’numpy.float64’>)

__init__(arbor, default_dtype=<class ’numpy.float64’>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor[, default_dtype]) Initialize self.
get_fields(data_object[, fields]) Load field data for a data object into storage struc-

tures.

ytree.frontends.lhalotree.io.LHaloTreeRootFieldIO

class ytree.frontends.lhalotree.io.LHaloTreeRootFieldIO(arbor, de-
fault_dtype=<class
’numpy.float64’>)

__init__(arbor, default_dtype=<class ’numpy.float64’>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor[, default_dtype]) Initialize self.
get_fields(data_object[, fields]) Load field data for a data object into storage struc-

tures.

2.15. Reference 83

ytree Documentation, Release 3.0.0

ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5TreeFieldIO

class ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5TreeFieldIO(arbor, de-
fault_dtype=<class
’numpy.float64’>)

__init__(arbor, default_dtype=<class ’numpy.float64’>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor[, default_dtype]) Initialize self.
get_fields(data_object[, fields]) Load field data for a data object into storage struc-

tures.

ytree.frontends.moria.io.MoriaTreeFieldIO

class ytree.frontends.moria.io.MoriaTreeFieldIO(arbor, default_dtype=<class
’numpy.float64’>)

__init__(arbor, default_dtype=<class ’numpy.float64’>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor[, default_dtype]) Initialize self.
get_fields(data_object[, fields]) Call _setup_tree if asking for desc_uid so we can cor-

rect it.

ytree.frontends.ytree.io.YTreeTreeFieldIO

class ytree.frontends.ytree.io.YTreeTreeFieldIO(arbor, default_dtype=<class
’numpy.float64’>)

__init__(arbor, default_dtype=<class ’numpy.float64’>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor[, default_dtype]) Initialize self.
get_fields(data_object[, fields]) Load field data for a data object into storage struc-

tures.

ytree.frontends.ytree.io.YTreeRootFieldIO

class ytree.frontends.ytree.io.YTreeRootFieldIO(arbor, default_dtype=<class
’numpy.float64’>)

84 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

__init__(arbor, default_dtype=<class ’numpy.float64’>)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(arbor[, default_dtype]) Initialize self.
get_fields(data_object[, fields]) Load field data for a data object into storage struc-

tures.

DataFile Subclasses

Subclasses for data i/o from individual files.

AHFDataFile(filename, arbor)
ConsistentTreesDataFile(filename)
ConsistentTreesHlistDataFile(filename, ar-
bor)
ConsistentTreesHDF5DataFile(filename,
linkname)
LHaloTreeHDF5DataFile(filename, linkname)
MoriaDataFile(filename)
RockstarDataFile(filename, arbor)
TreeFarmDataFile(filename, arbor)
YTreeDataFile(filename)

ytree.frontends.ahf.io.AHFDataFile

class ytree.frontends.ahf.io.AHFDataFile(filename, arbor)

__init__(filename, arbor)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(filename, arbor) Initialize self.
close()
open()

Attributes

links

ytree.frontends.consistent_trees.io.ConsistentTreesDataFile

class ytree.frontends.consistent_trees.io.ConsistentTreesDataFile(filename)

2.15. Reference 85

ytree Documentation, Release 3.0.0

__init__(filename)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(filename) Initialize self.
close()
open()

ytree.frontends.consistent_trees.io.ConsistentTreesHlistDataFile

class ytree.frontends.consistent_trees.io.ConsistentTreesHlistDataFile(filename,
ar-
bor)

__init__(filename, arbor)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(filename, arbor) Initialize self.
close()
open()

ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5DataFile

class ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5DataFile(filename,
linkname)

__init__(filename, linkname)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(filename, linkname) Initialize self.
close()
open()

ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5DataFile

class ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5DataFile(filename,
linkname)

__init__(filename, linkname)
Initialize self. See help(type(self)) for accurate signature.

86 Chapter 2. Table of Contents

ytree Documentation, Release 3.0.0

Methods

__init__(filename, linkname) Initialize self.
close()
open()

ytree.frontends.moria.io.MoriaDataFile

class ytree.frontends.moria.io.MoriaDataFile(filename)

__init__(filename)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(filename) Initialize self.
close()
open()
read_data(field, index)

Attributes

fh
field_cache
full_read

ytree.frontends.rockstar.io.RockstarDataFile

class ytree.frontends.rockstar.io.RockstarDataFile(filename, arbor)

__init__(filename, arbor)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(filename, arbor) Initialize self.
close()
open()

ytree.frontends.treefarm.io.TreeFarmDataFile

class ytree.frontends.treefarm.io.TreeFarmDataFile(filename, arbor)

__init__(filename, arbor)
Initialize self. See help(type(self)) for accurate signature.

2.15. Reference 87

ytree Documentation, Release 3.0.0

Methods

__init__(filename, arbor) Initialize self.
close()
open()

ytree.frontends.ytree.io.YTreeDataFile

class ytree.frontends.ytree.io.YTreeDataFile(filename)

__init__(filename)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(filename) Initialize self.
close()
open()

2.15.2 ChangeLog

This is a log of changes to ytree over its release history.

Contributors

The CREDITS file contains the most up-to-date list of everyone who has contributed to the ytree source code.

Version 3.0

Release date: August 3, 2021

New Featues

• Halo selection and generation with yt data objects (PR #82)

• Add frontends for consistent-trees hlist and locations.dat files (PR #48)

• Add consistent-trees HDF5 frontend (PR #53)

• Add LHaloTree_hdf5 frontend (PR #81)

• Add TreeFrog frontend (PR #103, #95, #88)

• Add Moria frontend (PR #84)

• Add get_node and get_leaf_nodes functions (PR #80)

• Add get_root_nodes function (PR #91)

• Add add_vector_field function (PR #71)

• Add plot customization (PR #49)

88 Chapter 2. Table of Contents

https://github.com/ytree-project/ytree/blob/main/CREDITS
https://github.com/ytree-project/ytree/pull/82
https://github.com/ytree-project/ytree/pull/48
https://github.com/ytree-project/ytree/pull/53
https://github.com/ytree-project/ytree/pull/81
https://github.com/ytree-project/ytree/pull/103
https://github.com/ytree-project/ytree/pull/95
https://github.com/ytree-project/ytree/pull/88
https://github.com/ytree-project/ytree/pull/84
https://github.com/ytree-project/ytree/pull/80
https://github.com/ytree-project/ytree/pull/91
https://github.com/ytree-project/ytree/pull/71
https://github.com/ytree-project/ytree/pull/49

ytree Documentation, Release 3.0.0

Enhancements

• All functions returning TreeNodes now return generators for a significant speed and memory usage improve-
ment. (PR #104, #64, #61)

• Speed and usability improvements to select_halos function (PR #83, #72)

• Add parallel analysis docs (PR #106)

• Make field_data an public facing attribute. (PR #105)

• Improved sorting for node_io_loop in ctrees_group and ctrees_hdf5 (PR #87)

• Relax requirements on cosmological parameters and add load options for AHF frontend (PR #76)

• Speed and usability updates to save_arbor function (PR #68, #58)

• Various infrastructure updates for newer versions of Python and dependencies (PR #92, #78, #75, #60, #54, #45)

• Update frontend development docs (PR #69)

• CI updates (PR #101, #96, #94, #93, #86, #79, #74, #73) #63, #55, #51, #50, #43, #42)

• Remove support for ytree-1.x outputs (PR #62)

• Drop support for python 3.5 (PR #59)

• Drop support for Python 2 (PR #41)

Bugfixes

• Use file sizes of loaded arbor when only saving analysis fields. (PR #100)

• Use regex for more robust filename check. (PR #77, #47)

• Fix issue with saving full arbor (PR #70)

• Check if attr is bytes or string. (PR #57)

• Fix arg in error message. (PR #56)

• Account for empty ctrees files in data files list (PR #52)

Version 2.3

Release date: December 17, 2019

This release marks the acceptance of the ytree paper in JOSS.

This is the last release to support Python 2.

New Features

• Add TreePlot for plotting and examples docs (PR #39)

Enhancements

• Add time field (PR #25)

• Move treefarm module to separate package (PR #28)

2.15. Reference 89

https://github.com/ytree-project/ytree/pull/104
https://github.com/ytree-project/ytree/pull/64
https://github.com/ytree-project/ytree/pull/61
https://github.com/ytree-project/ytree/pull/83
https://github.com/ytree-project/ytree/pull/72
https://github.com/ytree-project/ytree/pull/106
https://github.com/ytree-project/ytree/pull/105
https://github.com/ytree-project/ytree/pull/87
https://github.com/ytree-project/ytree/pull/76
https://github.com/ytree-project/ytree/pull/68
https://github.com/ytree-project/ytree/pull/58
https://github.com/ytree-project/ytree/pull/92
https://github.com/ytree-project/ytree/pull/78
https://github.com/ytree-project/ytree/pull/75
https://github.com/ytree-project/ytree/pull/60
https://github.com/ytree-project/ytree/pull/54
https://github.com/ytree-project/ytree/pull/45
https://github.com/ytree-project/ytree/pull/69
https://github.com/ytree-project/ytree/pull/101
https://github.com/ytree-project/ytree/pull/96
https://github.com/ytree-project/ytree/pull/94
https://github.com/ytree-project/ytree/pull/93
https://github.com/ytree-project/ytree/pull/86
https://github.com/ytree-project/ytree/pull/79
https://github.com/ytree-project/ytree/pull/74
https://github.com/ytree-project/ytree/pull/73
https://github.com/ytree-project/ytree/pull/63
https://github.com/ytree-project/ytree/pull/55
https://github.com/ytree-project/ytree/pull/51
https://github.com/ytree-project/ytree/pull/50
https://github.com/ytree-project/ytree/pull/43
https://github.com/ytree-project/ytree/pull/42
https://github.com/ytree-project/ytree/pull/62
https://github.com/ytree-project/ytree/pull/59
https://github.com/ytree-project/ytree/pull/41
https://github.com/ytree-project/ytree/pull/100
https://github.com/ytree-project/ytree/pull/77
https://github.com/ytree-project/ytree/pull/47
https://github.com/ytree-project/ytree/pull/70
https://github.com/ytree-project/ytree/pull/57
https://github.com/ytree-project/ytree/pull/56
https://github.com/ytree-project/ytree/pull/52
https://github.com/openjournals/joss-reviews/issues/1881
https://joss.theoj.org/
https://github.com/ytree-project/ytree/pull/39
https://github.com/ytree-project/ytree/pull/25
https://github.com/ytree-project/ytree/pull/28

ytree Documentation, Release 3.0.0

Version 2.2.1

Release date: October 24, 2018

Enhancements

• Refactor of CatalogDataFile class (PR #21)

• Simplify requirements file for docs build on readthedocs.io (PR #22)

Bugfixes

• Restore access to analysis fields for tree roots (PR #23)

• fix field access on non-root nodes when tree is not setup (PR #20)

• fix issue of uid and desc_uid fields being clobbered during initial field access (PR #19)

Version 2.2

Release date: August 28, 2018

New Features

• add vector fields.

• add select_halos function.

Enhancements

• significant refactor of field and i/o systems.

• upgrades to testing infrastructure.

Version 2.1.1

Release date: April 23, 2018

Bugfixes

• update environment.yml to fix broken readthedocs build.

Version 2.1

Release date: April 20, 2018

90 Chapter 2. Table of Contents

https://github.com/ytree-project/ytree/pull/21
https://github.com/ytree-project/ytree/pull/22
https://github.com/ytree-project/ytree/pull/23
https://github.com/ytree-project/ytree/pull/20
https://github.com/ytree-project/ytree/pull/19

ytree Documentation, Release 3.0.0

New Features

• add support for LHaloTree format.

• add support for Amiga Halo Finder format.

Version 2.0.2

Release date: February 16, 2018

Enhancements

• significantly improved i/o for ytree frontend.

Version 2.0

Release date: August 07, 2017

This is significant overhaul of the ytree machinery.

New Features

• tree building and field i/o now occur on-demand.

• support for yt-like derived fields that can be defined with simple functions.

• support for yt-like alias fields allowing for universal field naming conventions to simplify writing scripts for
multiple data formats.

• support for analysis fields which allow users to save the results of expensive halo analysis to fields associated
with each halo.

• all fields in consistent-trees and Rockstar now fully supported with units.

• an optimized format for saving and reloading trees for fast field access.

Enhancements

• significantly improved documentation including a guide to adding support for new file formats.

Version 1.1

Release date: January 12, 2017

New Features

• New, more yt-like field querying syntax for both arbors and tree nodes.

2.15. Reference 91

ytree Documentation, Release 3.0.0

Enhancements

• Python3 now supported.

• More robust unit system with restoring of unit registries from stored json.

• Added minimum radius to halo sphere selector.

• Replaced import of yt for specific imports of all required functions.

• Added ytree logger.

• Docs updated and API reference docs added.

Bugfixes

• Allow non-root trees to be saved and reloaded.

• Fix bug allowing trees that end before the final output.

Version 1.0

Release date: Sep 26, 2016

The inaugural release of ytree!

92 Chapter 2. Table of Contents

CHAPTER 3

Citing ytree

If you use ytree in your work, please cite the following:

Smith et al., (2019). ytree: A Python package for analyzing merger trees. Journal of Open Source Software, 4(44),
1881, https://doi.org/10.21105/joss.01881

For BibTeX users:

@article{ytree,
doi = {10.21105/joss.01881},
url = {https://doi.org/10.21105/joss.01881},
year = {2019},
month = {dec},
publisher = {The Open Journal},
volume = {4},
number = {44},
pages = {1881},
author = {Britton D. Smith and Meagan Lang},
title = {ytree: A Python package for analyzing merger trees},
journal = {Journal of Open Source Software}

}

If you would like to also cite the specific version of ytree used in your work, include the following reference:

@software{ytree_2_3,
author = {Britton Smith and

Meagan Lang},
title = {ytree: A Python package for analyzing merger trees},
month = dec,
year = 2019,
publisher = {Zenodo},
version = {ytree-2.3.0},
doi = {10.5281/zenodo.3580978},
url = {https://doi.org/10.5281/zenodo.3580978}

}

93

https://doi.org/10.21105/joss.01881

ytree Documentation, Release 3.0.0

94 Chapter 3. Citing ytree

CHAPTER 4

Search

• search

95

ytree Documentation, Release 3.0.0

96 Chapter 4. Search

Index

Symbols
__init__() (ytree.data_structures.arbor.Arbor

method), 38
__init__() (ytree.data_structures.arbor.CatalogArbor

method), 54
__init__() (ytree.data_structures.arbor.SegmentedArbor

method), 53
__init__() (ytree.data_structures.detection.Detector

method), 55
__init__() (ytree.data_structures.detection.FieldDetector

method), 56
__init__() (ytree.data_structures.detection.SelectionDetector

method), 56
__init__() (ytree.data_structures.fields.FieldContainer

method), 58
__init__() (ytree.data_structures.fields.FieldInfoContainer

method), 57
__init__() (ytree.data_structures.io.CatalogDataFile

method), 60
__init__() (ytree.data_structures.io.DataFile

method), 60
__init__() (ytree.data_structures.io.DefaultRootFieldIO

method), 60
__init__() (ytree.data_structures.io.FieldIO

method), 59
__init__() (ytree.data_structures.io.TreeFieldIO

method), 59
__init__() (ytree.data_structures.tree_node.TreeNode

method), 43
__init__() (ytree.data_structures.tree_node_selector.TreeNodeSelector

method), 46
__init__() (ytree.frontends.ahf.arbor.AHFArbor

method), 61
__init__() (ytree.frontends.ahf.fields.AHFFieldInfo

method), 73
__init__() (ytree.frontends.ahf.io.AHFDataFile

method), 85
__init__() (ytree.frontends.consistent_trees.arbor.ConsistentTreesArbor

method), 62

__init__() (ytree.frontends.consistent_trees.arbor.ConsistentTreesGroupArbor
method), 63

__init__() (ytree.frontends.consistent_trees.arbor.ConsistentTreesHlistArbor
method), 64

__init__() (ytree.frontends.consistent_trees.fields.ConsistentTreesFieldInfo
method), 74

__init__() (ytree.frontends.consistent_trees.io.ConsistentTreesDataFile
method), 85

__init__() (ytree.frontends.consistent_trees.io.ConsistentTreesHlistDataFile
method), 86

__init__() (ytree.frontends.consistent_trees.io.ConsistentTreesTreeFieldIO
method), 82

__init__() (ytree.frontends.consistent_trees_hdf5.arbor.ConsistentTreesHDF5Arbor
method), 65

__init__() (ytree.frontends.consistent_trees_hdf5.fields.ConsistentTreesHDF5FieldInfo
method), 75

__init__() (ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5DataFile
method), 86

__init__() (ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5RootFieldIO
method), 83

__init__() (ytree.frontends.consistent_trees_hdf5.io.ConsistentTreesHDF5TreeFieldIO
method), 82

__init__() (ytree.frontends.lhalotree.arbor.LHaloTreeArbor
method), 66

__init__() (ytree.frontends.lhalotree.fields.LHaloTreeFieldInfo
method), 76

__init__() (ytree.frontends.lhalotree.io.LHaloTreeRootFieldIO
method), 83

__init__() (ytree.frontends.lhalotree.io.LHaloTreeTreeFieldIO
method), 83

__init__() (ytree.frontends.lhalotree_hdf5.arbor.LHaloTreeHDF5Arbor
method), 67

__init__() (ytree.frontends.lhalotree_hdf5.fields.LHaloTreeHDF5FieldInfo
method), 77

__init__() (ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5DataFile
method), 86

__init__() (ytree.frontends.lhalotree_hdf5.io.LHaloTreeHDF5TreeFieldIO
method), 84

__init__() (ytree.frontends.moria.arbor.MoriaArbor
method), 68

97

ytree Documentation, Release 3.0.0

__init__() (ytree.frontends.moria.fields.MoriaFieldInfo
method), 78

__init__() (ytree.frontends.moria.io.MoriaDataFile
method), 87

__init__() (ytree.frontends.moria.io.MoriaTreeFieldIO
method), 84

__init__() (ytree.frontends.rockstar.arbor.RockstarArbor
method), 69

__init__() (ytree.frontends.rockstar.fields.RockstarFieldInfo
method), 79

__init__() (ytree.frontends.rockstar.io.RockstarDataFile
method), 87

__init__() (ytree.frontends.treefarm.arbor.TreeFarmArbor
method), 70

__init__() (ytree.frontends.treefarm.fields.TreeFarmFieldInfo
method), 80

__init__() (ytree.frontends.treefarm.io.TreeFarmDataFile
method), 87

__init__() (ytree.frontends.ytree.arbor.YTreeArbor
method), 71

__init__() (ytree.frontends.ytree.io.YTreeDataFile
method), 88

__init__() (ytree.frontends.ytree.io.YTreeRootFieldIO
method), 84

__init__() (ytree.frontends.ytree.io.YTreeTreeFieldIO
method), 84

__init__() (ytree.visualization.tree_plot.TreePlot
method), 52

A
add_alias_field()

(ytree.data_structures.arbor.Arbor method), 39
add_analysis_field()

(ytree.data_structures.arbor.Arbor method), 40
add_derived_field()

(ytree.data_structures.arbor.Arbor method), 40
add_tree_node_selector() (in module

ytree.data_structures.tree_node_selector),
46

add_vector_field()
(ytree.data_structures.arbor.Arbor method), 41

AHFArbor (class in ytree.frontends.ahf.arbor), 61
AHFDataFile (class in ytree.frontends.ahf.io), 85
AHFFieldInfo (class in ytree.frontends.ahf.fields), 73
Arbor (class in ytree.data_structures.arbor), 38

C
CatalogArbor (class in ytree.data_structures.arbor),

54
CatalogDataFile (class in ytree.data_structures.io),

60
ConsistentTreesArbor (class in

ytree.frontends.consistent_trees.arbor), 62

ConsistentTreesDataFile (class in
ytree.frontends.consistent_trees.io), 85

ConsistentTreesFieldInfo (class in
ytree.frontends.consistent_trees.fields), 74

ConsistentTreesGroupArbor (class in
ytree.frontends.consistent_trees.arbor), 63

ConsistentTreesHDF5Arbor (class in
ytree.frontends.consistent_trees_hdf5.arbor),
65

ConsistentTreesHDF5DataFile (class in
ytree.frontends.consistent_trees_hdf5.io), 86

ConsistentTreesHDF5FieldInfo (class in
ytree.frontends.consistent_trees_hdf5.fields),
75

ConsistentTreesHDF5RootFieldIO (class in
ytree.frontends.consistent_trees_hdf5.io), 83

ConsistentTreesHDF5TreeFieldIO (class in
ytree.frontends.consistent_trees_hdf5.io), 82

ConsistentTreesHlistArbor (class in
ytree.frontends.consistent_trees.arbor), 64

ConsistentTreesHlistDataFile (class in
ytree.frontends.consistent_trees.io), 86

ConsistentTreesTreeFieldIO (class in
ytree.frontends.consistent_trees.io), 82

D
DataFile (class in ytree.data_structures.io), 60
DefaultRootFieldIO (class in

ytree.data_structures.io), 60
Detector (class in ytree.data_structures.detection), 55

F
FieldContainer (class in

ytree.data_structures.fields), 58
FieldDetector (class in

ytree.data_structures.detection), 56
FieldInfoContainer (class in

ytree.data_structures.fields), 57
FieldIO (class in ytree.data_structures.io), 59

G
get_leaf_nodes() (ytree.data_structures.tree_node.TreeNode

method), 43
get_node() (ytree.data_structures.tree_node.TreeNode

method), 44
get_nodes_from_selection()

(ytree.frontends.ytree.arbor.YTreeArbor
method), 49

get_root_nodes() (ytree.data_structures.tree_node.TreeNode
method), 44

get_yt_selection()
(ytree.frontends.ytree.arbor.YTreeArbor
method), 47

98 Index

ytree Documentation, Release 3.0.0

L
LHaloTreeArbor (class in

ytree.frontends.lhalotree.arbor), 66
LHaloTreeFieldInfo (class in

ytree.frontends.lhalotree.fields), 76
LHaloTreeHDF5Arbor (class in

ytree.frontends.lhalotree_hdf5.arbor), 67
LHaloTreeHDF5DataFile (class in

ytree.frontends.lhalotree_hdf5.io), 86
LHaloTreeHDF5FieldInfo (class in

ytree.frontends.lhalotree_hdf5.fields), 77
LHaloTreeHDF5TreeFieldIO (class in

ytree.frontends.lhalotree_hdf5.io), 84
LHaloTreeRootFieldIO (class in

ytree.frontends.lhalotree.io), 83
LHaloTreeTreeFieldIO (class in

ytree.frontends.lhalotree.io), 83
load() (in module ytree.data_structures.load), 37

M
max_field_value() (in module

ytree.data_structures.tree_node_selector),
47

min_field_value() (in module
ytree.data_structures.tree_node_selector),
47

min_mass (ytree.visualization.tree_plot.TreePlot
attribute), 51

min_mass_ratio (ytree.visualization.tree_plot.TreePlot
attribute), 51

MoriaArbor (class in ytree.frontends.moria.arbor), 68
MoriaDataFile (class in ytree.frontends.moria.io), 87
MoriaFieldInfo (class in

ytree.frontends.moria.fields), 78
MoriaTreeFieldIO (class in

ytree.frontends.moria.io), 84

R
RockstarArbor (class in

ytree.frontends.rockstar.arbor), 69
RockstarDataFile (class in

ytree.frontends.rockstar.io), 87
RockstarFieldInfo (class in

ytree.frontends.rockstar.fields), 79

S
save() (ytree.visualization.tree_plot.TreePlot method),

52
save_arbor() (ytree.data_structures.arbor.Arbor

method), 41
save_tree() (ytree.data_structures.tree_node.TreeNode

method), 45
SegmentedArbor (class in

ytree.data_structures.arbor), 53

select_halos() (ytree.data_structures.arbor.Arbor
method), 42

SelectionDetector (class in
ytree.data_structures.detection), 56

set_selector() (ytree.data_structures.arbor.Arbor
method), 46

size_field (ytree.visualization.tree_plot.TreePlot at-
tribute), 51

size_log (ytree.visualization.tree_plot.TreePlot
attribute), 51

T
TreeFarmArbor (class in

ytree.frontends.treefarm.arbor), 70
TreeFarmDataFile (class in

ytree.frontends.treefarm.io), 87
TreeFarmFieldInfo (class in

ytree.frontends.treefarm.fields), 80
TreeFieldIO (class in ytree.data_structures.io), 59
TreeNode (class in ytree.data_structures.tree_node), 43
TreeNodeSelector (class in

ytree.data_structures.tree_node_selector),
45

TreePlot (class in ytree.visualization.tree_plot), 50

Y
ytds (ytree.frontends.ytree.arbor.YTreeArbor attribute),

50
YTreeArbor (class in ytree.frontends.ytree.arbor), 71
YTreeDataFile (class in ytree.frontends.ytree.io), 88
YTreeRootFieldIO (class in

ytree.frontends.ytree.io), 84
YTreeTreeFieldIO (class in

ytree.frontends.ytree.io), 84

Index 99

	I want to make merger trees!
	Table of Contents
	Installation
	What version do I have?
	Sample Data
	An Important Note on Comoving and Proper Units
	Working with Merger Trees
	Fields in ytree
	Plotting Merger Trees
	Parallel Computing with ytree
	Example Applications
	Community Code of Conduct
	Contributing to ytree
	Developer Guide
	Help
	Citing ytree
	Reference

	Citing ytree
	Search
	Index

